
Sun Studio 12: C User's Guide

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 819–5265

Copyright 2007 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In particular, and without
limitation, these intellectual property rights may include one or more U.S. patents or pending patent applications in the U.S. and in other countries.

U.S. Government Rights – Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and applicable provisions
of the FAR and its supplements.

This distribution may include materials developed by third parties.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and other
countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, the Solaris logo, the Java Coffee Cup logo, docs.sun.com, Java, and Solaris are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts of
Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to the
Xerox Graphical User Interface, which license also covers Sun's licensees who implement OPEN LOOK GUIs and otherwise comply with Sun's written license
agreements.

Products covered by and information contained in this publication are controlled by U.S. Export Control laws and may be subject to the export or import laws in
other countries. Nuclear, missile, chemical or biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export
or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited to, the denied persons and specially
designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2007 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés.

Sun Microsystems, Inc. détient les droits de propriété intellectuelle relatifs à la technologie incorporée dans le produit qui est décrit dans ce document. En particulier,
et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plusieurs brevets américains ou des applications de brevet en attente aux Etats-Unis
et dans d'autres pays.

Cette distribution peut comprendre des composants développés par des tierces personnes.

Certaines composants de ce produit peuvent être dérivées du logiciel Berkeley BSD, licenciés par l'Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d'autres pays; elle est licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, le logo Solaris, le logo Java Coffee Cup, docs.sun.com, Java et Solaris sont des marques de fabrique ou des marques déposées de
Sun Microsystems, Inc. aux Etats-Unis et dans d'autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques
déposées de SPARC International, Inc. aux Etats-Unis et dans d'autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par
Sun Microsystems, Inc.

L'interface d'utilisation graphique OPEN LOOK et Sun a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît les efforts de
pionniers de Xerox pour la recherche et le développement du concept des interfaces d'utilisation visuelle ou graphique pour l'industrie de l'informatique. Sun détient
une licence non exclusive de Xerox sur l'interface d'utilisation graphique Xerox, cette licence couvrant également les licenciés de Sun qui mettent en place l'interface
d'utilisation graphique OPEN LOOK et qui, en outre, se conforment aux licences écrites de Sun.

Les produits qui font l'objet de cette publication et les informations qu'il contient sont régis par la legislation américaine en matière de contrôle des exportations et
peuvent être soumis au droit d'autres pays dans le domaine des exportations et importations. Les utilisations finales, ou utilisateurs finaux, pour des armes nucléaires,
des missiles, des armes chimiques ou biologiques ou pour le nucléaire maritime, directement ou indirectement, sont strictement interdites. Les exportations ou
réexportations vers des pays sous embargo des Etats-Unis, ou vers des entités figurant sur les listes d'exclusion d'exportation américaines, y compris, mais de manière
non exclusive, la liste de personnes qui font objet d'un ordre de ne pas participer, d'une façon directe ou indirecte, aux exportations des produits ou des services qui
sont régis par la legislation américaine en matière de contrôle des exportations et la liste de ressortissants spécifiquement designés, sont rigoureusement interdites.

LA DOCUMENTATION EST FOURNIE "EN L'ETAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES OU TACITES
SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT TOUTE GARANTIE
IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L'APTITUDE A UNE UTILISATION PARTICULIERE OU A L'ABSENCE DE CONTREFACON.

080319@19860

Contents

Preface ...19

1 Introduction to the C Compiler ... 25
1.1 New Features and Functionality of the Sun Studio 12 C 5.9 Compiler 25

1.1.1 Compiling for 64–Bit Platforms .. 26
1.1.2 Special x86 Notes ... 26
1.1.3 Binary Compatibility Verification .. 27

1.2 Standards Conformance ... 27
1.3 C Readme File .. 28
1.4 Man Pages ... 28
1.5 Organization of the Compiler .. 29
1.6 C-Related Programming Tools .. 31

2 C-Compiler Information Specific to Sun’s Implementation ... 33
2.1 Constants .. 33

2.1.1 Integral Constants ... 33
2.1.2 Character Constants ... 34

2.2 Linker Scoping Specifiers ... 35
2.3 Thread Local Storage Specifier ... 35
2.4 Floating Point, Nonstandard Mode ... 36
2.5 Labels as Values ... 37
2.6 long long Data Type ...39

2.6.1 Printing long long Data Types ...39
2.6.2 Usual Arithmetic Conversions .. 39

2.7 Assertions ... 40
2.8 Pragmas .. 41

2.8.1 align .. 41

3

2.8.2 c99 ... 41
2.8.3 does_not_read_global_data .. 42
2.8.4 does_not_return ... 42
2.8.5 does_not_write_global_data ... 42
2.8.6 error_messages .. 43
2.8.7 fini ... 43
2.8.8 hdrstop ... 44
2.8.9 ident .. 44
2.8.10 init ... 44
2.8.11 inline ... 45
2.8.12 int_to_unsigned .. 45
2.8.13 MP serial_loop .. 45
2.8.14 MP serial_loop_nested ... 46
2.8.15 MP taskloop ... 46
2.8.16 nomemorydepend .. 46
2.8.17 no_side_effect ... 47
2.8.18 opt ... 47
2.8.19 pack ... 47
2.8.20 pipeloop ... 48
2.8.21 rarely_called .. 49
2.8.22 redefine_extname ... 49
2.8.23 returns_new_memory ... 50
2.8.24 unknown_control_flow ... 51
2.8.25 unroll .. 51
2.8.26 warn_missing_parameter_info .. 51
2.8.27 weak .. 52

2.9 Predefined Names ... 53
2.10 The Value of errno .. 54
2.11 _Restrict Keyword .. 54
2.12 _ _asm Keyword ...54
2.13 Environment Variables .. 54

2.13.1 OMP_DYNAMIC .. 54
2.13.2 OMP_NESTED .. 54
2.13.3 OMP_NUM_THREADS ... 55
2.13.4 OMP_SCHEDULE ... 55
2.13.5 PARALLEL .. 55

Contents

Sun Studio 12: C User's Guide •4

2.13.6 SUN_PROFDATA ... 55
2.13.7 SUN_PROFDATA_DIR ... 55
2.13.8 SUNPRO_SB_INIT_FILE_NAME .. 55
2.13.9 SUNW_MP_THR_IDLE ... 55
2.13.10 TMPDIR .. 56

2.14 How to Specify Include Files .. 56
2.14.1 Using the -I- Option to Change the Search Algorithm .. 57

3 Parallelizing Sun C Code ...61
3.1 Overview ... 61

3.1.1 Example of Use .. 61
3.2 Parallelizing for OpenMP ... 62

3.2.1 Handling OpenMP Runtime Warnings ... 62
3.3 Environment Variables ... 62

3.3.1 PARALLEL .. 62
3.4 Data Dependence and Interference ... 65

3.4.1 Parallel Execution Model ... 66
3.4.2 Private Scalars and Private Arrays .. 67
3.4.3 Storeback .. 69
3.4.4 Reduction Variables ... 70

3.5 Speedups ... 71
3.5.1 Amdahl’s Law .. 71

3.6 Load Balance and Loop Scheduling .. 75
3.6.1 Static or Chunk Scheduling ... 75
3.6.2 Self Scheduling .. 76
3.6.3 Guided Self Scheduling .. 76

3.7 Loop Transformations .. 76
3.7.1 Loop Distribution ... 76
3.7.2 Loop Fusion ... 77
3.7.3 Loop Interchange .. 78

3.8 Aliasing and Parallelization .. 79
3.8.1 Array and Pointer References .. 80
3.8.2 Restricted Pointers .. 80
3.8.3 Explicit Parallelization and Pragmas .. 81

Contents

5

4 lint Source Code Checker ...89
4.1 Basic and Enhanced lint Modes ... 89
4.2 Using lint .. 90
4.3 The lint Options .. 92

4.3.1 -# ... 92
4.3.2 -### .. 92
4.3.3 -a ... 92
4.3.4 -b ... 92
4.3.5 -C filename ... 92
4.3.6 -c ... 93
4.3.7 -dirout=dir ... 93
4.3.8 -err=warn .. 93
4.3.9 -errchk=l(, l) ... 93
4.3.10 -errfmt=f ... 94
4.3.11 -errhdr=h .. 94
4.3.12 -erroff=tag(, tag) .. 95
4.3.13 -errsecurity=v ... 96
4.3.14 -errtags=a .. 97
4.3.15 -errwarn=t .. 97
4.3.16 -F ... 98
4.3.17 -fd .. 98
4.3.18 -flagsrc=file ... 98
4.3.19 -h ... 98
4.3.20 -Idir .. 98
4.3.21 -k ... 99
4.3.22 -Ldir .. 99
4.3.23 -lx .. 99
4.3.24 -m ... 99
4.3.25 -m32|-m64 ... 99
4.3.26 -Ncheck=c .. 100
4.3.27 -Nlevel=n .. 100
4.3.28 -n ... 101
4.3.29 -ox .. 101
4.3.30 -p ... 102
4.3.31 -Rfile ... 102
4.3.32 -s ... 102

Contents

Sun Studio 12: C User's Guide •6

4.3.33 -u ... 102
4.3.34 -V ... 102
4.3.35 -v ... 102
4.3.36 -Wfile ... 102
4.3.37 -XCC=a .. 103
4.3.38 -Xalias_level[=l] .. 103
4.3.39 -Xarch=amd64 ... 103
4.3.40 -Xarch=v9 .. 103
4.3.41 -Xc99[=o] ... 103
4.3.42 -Xexplicitpar=a ... 104
4.3.43 -Xkeeptmp=a .. 104
4.3.44 -Xtemp=dir ... 104
4.3.45 -Xtime=a .. 104
4.3.46 -Xtransition=a ... 104
4.3.47 -Xustr={ascii_utf16_ushort|no} .. 104
4.3.48 -x ... 105
4.3.49 -y ... 105

4.4 lint Messages .. 105
4.4.1 Options to Suppress Messages ... 105
4.4.2 lint Message Formats .. 106

4.5 lint Directives .. 108
4.5.1 Predefined Values ... 108
4.5.2 Directives ... 109

4.6 lint Reference and Examples .. 113
4.6.1 Diagnostics Performed by lint .. 113
4.6.2 lint Libraries .. 116
4.6.3 lint Filters ... 118

5 Type-Based Alias Analysis ..119
5.1 Introduction to Type-Based Analysis ... 119
5.2 Using Pragmas for Finer Control .. 120

5.2.1 #pragma alias_level level (list) ... 120
5.3 Checking With lint .. 122

5.3.1 Struct Pointer Cast of Scalar Pointer .. 123
5.3.2 Struct Pointer Cast of Void Pointer .. 123

Contents

7

5.3.3 Cast of Struct Field to Structure Pointer ... 123
5.3.4 Explicit Aliasing Required ... 124

5.4 Examples of Memory Reference Constraints ... 124

6 Transitioning to ISO C ...135
6.1 Basic Modes .. 135

6.1.1 -Xc ... 135
6.1.2 -Xa ... 135
6.1.3 -Xt ... 136
6.1.4 -Xs ... 136

6.2 A Mixture of Old- and New-Style Functions ... 136
6.2.1 Writing New Code .. 136
6.2.2 Updating Existing Code ... 137
6.2.3 Mixing Considerations .. 137

6.3 Functions With Varying Arguments .. 139
6.4 Promotions: Unsigned Versus Value Preserving .. 142

6.4.1 Background ... 142
6.4.2 Compilation Behavior .. 142
6.4.3 First Example: The Use of a Cast ... 142
6.4.4 Bit-fields ... 143
6.4.5 Second Example: Same Result ... 143
6.4.6 Integral Constants ... 144
6.4.7 Third Example: Integral Constants .. 144

6.5 Tokenization and Preprocessing ... 145
6.5.1 ISO C Translation Phases .. 145
6.5.2 Old C Translation Phases ... 146
6.5.3 Logical Source Lines ... 147
6.5.4 Macro Replacement .. 147
6.5.5 Using Strings ... 148
6.5.6 Token Pasting .. 148

6.6 const and volatile .. 149
6.6.1 Types, Only for lvalue .. 149
6.6.2 Type Qualifiers in Derived Types ... 149
6.6.3 const Means readonly .. 151
6.6.4 Examples of const Usage ... 151

Contents

Sun Studio 12: C User's Guide •8

6.6.5 volatile Means Exact Semantics .. 151
6.6.6 Examples of volatile Usage .. 151

6.7 Multibyte Characters and Wide Characters ... 152
6.7.1 Asian Languages Require Multibyte Characters ... 152
6.7.2 Encoding Variations ... 153
6.7.3 Wide Characters ... 153
6.7.4 Conversion Functions .. 153
6.7.5 C Language Features ... 154

6.8 Standard Headers and Reserved Names ... 155
6.8.1 Standard Headers .. 155
6.8.2 Names Reserved for Implementation Use ... 155
6.8.3 Names Reserved for Expansion ... 156
6.8.4 Names Safe to Use ... 157

6.9 Internationalization .. 157
6.9.1 Locales .. 157
6.9.2 The setlocale() Function ... 158
6.9.3 Changed Functions ... 159
6.9.4 New Functions .. 159

6.10 Grouping and Evaluation in Expressions ... 160
6.10.1 Definitions ... 160
6.10.2 The K&R C Rearrangement License ... 161
6.10.3 The ISO C Rules .. 161
6.10.4 The Parentheses .. 162
6.10.5 The As If Rule .. 162

6.11 Incomplete Types .. 163
6.11.1 Types .. 163
6.11.2 Completing Incomplete Types .. 163
6.11.3 Declarations .. 163
6.11.4 Expressions .. 164
6.11.5 Justification .. 164
6.11.6 Examples .. 164

6.12 Compatible and Composite Types .. 165
6.12.1 Multiple Declarations ... 165
6.12.2 Separate Compilation Compatibility ... 165
6.12.3 Single Compilation Compatibility ... 166
6.12.4 Compatible Pointer Types ... 166

Contents

9

6.12.5 Compatible Array Types .. 166
6.12.6 Compatible Function Types .. 166
6.12.7 Special Cases .. 167
6.12.8 Composite Types .. 167

7 Converting Applications for a 64-Bit Environment ... 169
7.1 Overview of the Data Model Differences .. 169
7.2 Implementing Single Source Code .. 170

7.2.1 Derived Types ... 170
7.2.2 Tools ... 173

7.3 Converting to the LP64 Data Type Model .. 174
7.3.1 Integer and Pointer Size Change ... 174
7.3.2 Integer and Long Size Change ... 175
7.3.3 Sign Extension ... 175
7.3.4 Pointer Arithmetic Instead of Integers ... 177
7.3.5 Structures ... 177
7.3.6 Unions .. 178
7.3.7 Type Constants ... 178
7.3.8 Beware of Implicit Declarations .. 179
7.3.9 sizeof() Is an Unsigned long .. 179
7.3.10 Use Casts to Show Your Intentions .. 180
7.3.11 Check Format String Conversion Operation .. 180

7.4 Other Considerations ... 181
7.4.1 Derived Types That Have Grown in Size ... 181
7.4.2 Check for Side Effects of Changes ... 181
7.4.3 Check Whether Literal Uses of long Still Make Sense .. 181
7.4.4 Use #ifdef for Explicit 32-bit Versus 64-bit Prototypes ... 182
7.4.5 Calling Convention Changes .. 182
7.4.6 Algorithm Changes .. 182

7.5 Checklist for Getting Started .. 182

8 cscope: Interactively Examining a C Program .. 185
8.1 The cscope Process ... 185
8.2 Basic Use ... 186

8.2.1 Step 1: Set Up the Environment .. 186

Contents

Sun Studio 12: C User's Guide •10

8.2.2 Step 2: Invoke the cscope Program .. 187
8.2.3 Step 3: Locate the Code .. 187
8.2.4 Step 4: Edit the Code ... 193
8.2.5 Command-Line Options ... 194
8.2.6 View Paths ... 196
8.2.7 cscope and Editor Call Stacks ... 197
8.2.8 Examples .. 197
8.2.9 Command-Line Syntax for Editors .. 201

8.3 Unknown Terminal Type Error .. 201

A Compiler Options Grouped by Functionality .. 203
A.1 Options Summarized by Function ... 203

A.1.1 Optimization and Performance Options .. 203
A.1.2 Compile-Time and Link-Time Options ... 205
A.1.3 Data-Alignment Options .. 206
A.1.4 Numerics and Floating Point Options ... 207
A.1.5 Parallelization Options .. 208
A.1.6 Source-Code Options .. 209
A.1.7 Compiled-Code Options .. 210
A.1.8 Compilation-Mode Options ... 210
A.1.9 Diagnostic Options .. 211
A.1.10 Debugging Options ... 212
A.1.11 Linking and Libraries Options ... 212
A.1.12 Target-Platform Options .. 213
A.1.13 x86-Specific Options ... 214
A.1.14 Licensing Options .. 214
A.1.15 Obsolete Options ... 214

B C Compiler Options Reference ..217
B.1 Option Syntax .. 217
B.2 The cc Options .. 218

B.2.1 -# .. 218
B.2.2 -### .. 218
B.2.3 -Aname[(tokens)] .. 219
B.2.4 -B[static|dynamic] ... 219

Contents

11

B.2.5 -C .. 219
B.2.6 -c .. 220
B.2.7 -Dname[(arg[,arg])][=expansion] ... 220
B.2.8 -d[y|n] .. 221
B.2.9 -dalign .. 221
B.2.10 -E .. 221
B.2.11 -errfmt[=[no%]error] ... 221
B.2.12 -erroff[=t] ... 222
B.2.13 -errshort[=i] ... 222
B.2.14 -errtags[=a] .. 223
B.2.15 -errwarn[=t] ... 223
B.2.16 -fast .. 224
B.2.17 -fd .. 226
B.2.18 -features=[[no%]extinl|%none] ... 226
B.2.19 -flags .. 226
B.2.20 -flteval[={any|2}] .. 227
B.2.21 -fma[={none|fused}] .. 227
B.2.22 -fnonstd .. 227
B.2.23 -fns[={no|yes}] .. 228
B.2.24 -fprecision=p ... 228
B.2.25 -fround=r .. 228
B.2.26 -fsimple[=n] .. 229
B.2.27 -fsingle .. 230
B.2.28 -fstore .. 230
B.2.29 -ftrap=t[,t...] ... 230
B.2.30 -G .. 231
B.2.31 -g .. 232
B.2.32 -H .. 232
B.2.33 -h name .. 233
B.2.34 -I[-|dir] .. 233
B.2.35 -i .. 233
B.2.36 -KPIC .. 233
B.2.37 -Kpic .. 234
B.2.38 -keeptmp .. 234
B.2.39 -Ldir ... 234
B.2.40 -lname .. 234

Contents

Sun Studio 12: C User's Guide •12

B.2.41 -m32|-m64 .. 234
B.2.42 -mc .. 235
B.2.43 -misalign ... 235
B.2.44 -misalign2 ... 235
B.2.45 -mr[,string] ... 235
B.2.46 -mt .. 235
B.2.47 -native .. 236
B.2.48 -nofstore ... 236
B.2.49 -O .. 236
B.2.50 -o filename ... 236
B.2.51 -P .. 237
B.2.52 -p .. 237
B.2.53 -Q[y|n] .. 237
B.2.54 -qp .. 237
B.2.55 -Rdir[:dir] ... 237
B.2.56 -S .. 237
B.2.57 -s .. 237
B.2.58 -Uname .. 238
B.2.59 -V .. 238
B.2.60 -v .. 238
B.2.61 -Wc,arg ... 239
B.2.62 -w .. 240
B.2.63 -X[c|a|t|s] ... 240
B.2.64 -x386 .. 241
B.2.65 -x486 .. 241
B.2.66 -xa .. 241
B.2.67 -xalias_level[=l] ... 241
B.2.68 -xarch=isa ... 243
B.2.69 -xautopar ... 250
B.2.70 -xbinopt={prepare|off} .. 251
B.2.71 -xbuiltin[=(%all|%none)] ... 251
B.2.72 -xCC .. 252
B.2.73 -xc99[=o] ... 252
B.2.74 -xcache[=c] ... 252
B.2.75 –xcg[89|92] ... 254
B.2.76 -xchar[=o] ... 254

Contents

13

B.2.77 -xchar_byte_order[=o] ... 255
B.2.78 -xcheck[=o] .. 256
B.2.79 -xchip[=c] ... 256
B.2.80 -xcode[=v] ... 258
B.2.81 -xcrossfile[=n] .. 260
B.2.82 -xcsi .. 261
B.2.83 -xdebugformat=[stabs|dwarf] ... 261
B.2.84 -xdepend=[yes|no] .. 261
B.2.85 -xdryrun .. 262
B.2.86 -xe .. 262
B.2.87 -xexplicitpar ... 262
B.2.88 -xF[=v[,v...]] .. 263
B.2.89 -xhelp=f .. 264
B.2.90 -xhwcprof ... 265
B.2.91 -xinline=list .. 265
B.2.92 -xinstrument=[no%]datarace ... 266
B.2.93 -xipo[=a] ... 267
B.2.94 -xipo_archive=[a] .. 269
B.2.95 -xjobs=n ... 270
B.2.96 -xldscope={v} .. 271
B.2.97 -xlibmieee ... 272
B.2.98 -xlibmil .. 272
B.2.99 -xlibmopt ... 272
B.2.100 -xlic_lib=sunperf .. 273
B.2.101 -xlicinfo ... 273
B.2.102 -xlinkopt[=level] ... 273
B.2.103 -xloopinfo ... 274
B.2.104 -xM .. 275
B.2.105 -xM1 .. 275
B.2.106 -xMD .. 276
B.2.107 -xMF filename .. 276
B.2.108 -xMMD .. 276
B.2.109 -xMerge .. 276
B.2.110 -xmaxopt[=v] .. 276
B.2.111 -xmemalign=ab ... 277
B.2.112 -xmodel=[a] .. 278

Contents

Sun Studio 12: C User's Guide •14

B.2.113 -xnolib .. 279
B.2.114 -xnolibmil ... 279
B.2.115 -xnolibmopt ... 279
B.2.116 -xnorunpath ... 279
B.2.117 -xO[1|2|3|4|5] .. 279
B.2.118 -xopenmp[=i] ... 282
B.2.119 -xP .. 284
B.2.120 -xpagesize=n ... 284
B.2.121 -xpagesize_heap=n .. 285
B.2.122 -xpagesize_stack=n .. 285
B.2.123 -xparallel ... 286
B.2.124 -xpch=v .. 287
B.2.125 -xpchstop=[file|<include>] .. 291
B.2.126 -xpentium ... 292
B.2.127 -xpg .. 292
B.2.128 -xprefetch[=val[,val]] ... 293
B.2.129 -xprefetch_auto_type=a .. 294
B.2.130 -xprefetch_level=l ... 294
B.2.131 -xprofile=p ... 295
B.2.132 -xprofile_ircache[=path] ... 298
B.2.133 -xprofile_pathmap .. 298
B.2.134 -xreduction ... 299
B.2.135 -xregs=r[,r…] .. 299
B.2.136 -xrestrict[=f] ... 301
B.2.137 -xs .. 301
B.2.138 -xsafe=mem ... 301
B.2.139 -xsb .. 302
B.2.140 -xsbfast ... 302
B.2.141 -xsfpconst ... 302
B.2.142 -xspace .. 303
B.2.143 -xstrconst ... 303
B.2.144 -xtarget=t .. 303
B.2.145 -xtemp=dir .. 308
B.2.146 -xthreadvar[=o] .. 308
B.2.147 -xtime .. 309
B.2.148 -xtransition ... 309

Contents

15

B.2.149 -xtrigraphs ... 310
B.2.150 -xunroll=n ... 311
B.2.151 -xustr={ascii_utf16_ushort|no} ... 311
B.2.152 -xvector[=a] .. 312
B.2.153 -xvis .. 312
B.2.154 -xvpara .. 313
B.2.155 -Yc, dir .. 313
B.2.156 -YA, dir .. 314
B.2.157 -YI, dir .. 314
B.2.158 -YP, dir .. 314
B.2.159 -YS, dir .. 314
B.2.160 -Zll .. 314

B.3 Options Passed to the Linker ... 314

C Implementation-Defined ISO/IEC C99 Behavior ..315
C.1 Implementation-defined Behavior (J.3) .. 315

C.1.1 Translation (J.3.1) ... 315
C.1.2 Environment (J.3.2) ... 316
C.1.3 Identifiers (J.3.3) ... 318
C.1.4 Characters (J.3.4) .. 319
C.1.5 Integers (J.3.5) ... 320
C.1.6 Floating point (J.3.6) .. 321
C.1.7 Arrays and Pointers (J.3.7) .. 322
C.1.8 Hints (J.3.8) ... 322
C.1.9 Structures, Unions, Enumerations, and Bit-fields (J.3.9) .. 323
C.1.10 Qualifiers (J.3.10) ... 324
C.1.11 Preprocessing Directives (J.3.11) ... 324
C.1.12 Library Functions (J.3.12) ... 325
C.1.13 Architecture (J.3.13) .. 331
C.1.14 Locale-specific Behavior (J.4) ... 334

D Supported Features of C99 ..337
D.1 Discussion and Examples .. 337

D.1.1 Precision of Floating Point Evaluators .. 338
D.1.2 C99 Keywords .. 339

Contents

Sun Studio 12: C User's Guide •16

D.1.3 __func__ Support .. 340
D.1.4 Universal Character Names (UCN) ... 340
D.1.5 Commenting Code With // .. 340
D.1.6 Disallowed Implicit int and Implicit Function Declarations 340
D.1.7 Declarations Using Implicit int .. 341
D.1.8 Flexible Array Members .. 341
D.1.9 Idempotent Qualifiers ... 342
D.1.10 inline Functions ... 343
D.1.11 Static and Other Type Qualifiers Allowed in Array Declarators 344
D.1.12 Variable Length Arrays (VLA): .. 344
D.1.13 Designated Initializers ... 345
D.1.14 Mixed Declarations and Code .. 346
D.1.15 Declaration in for-Loop Statement .. 346
D.1.16 Macros With a Variable Number of Arguments .. 346
D.1.17 _Pragma .. 347

E Implementation-Defined ISO/IEC C90 Behavior ..349
E.1 Implementation Compared to the ISO Standard .. 349

E.1.1 Translation (G.3.1) ... 349
E.1.2 Environment (G.3.2) .. 350
E.1.3 Identifiers (G.3.3) ... 350
E.1.4 Characters (G.3.4) .. 350
E.1.5 Integers (G.3.5) ... 352
E.1.6 Floating-Point (G.3.6) .. 353
E.1.7 Arrays and Pointers (G.3.7) ... 354
E.1.8 Registers (G.3.8) ... 355
E.1.9 Structures, Unions, Enumerations, and Bit-Fields (G.3.9) ... 355
E.1.10 Qualifiers (G.3.10) .. 357
E.1.11 Declarators (G.3.11) ... 357
E.1.12 Statements (G.3.12) .. 357
E.1.13 Preprocessing Directives (G.3.13) .. 357
E.1.14 Library Functions (G.3.14) .. 359
E.1.15 Locale-Specific Behavior (G.4) ... 364

Contents

17

F ISO C Data Representations ...367
F.1 Storage Allocation ... 367
F.2 Data Representations .. 368

F.2.1 Integer Representations .. 368
F.2.2 Floating-Point Representations .. 370
F.2.3 Exceptional Values .. 372
F.2.4 Hexadecimal Representation of Selected Numbers .. 373
F.2.5 Pointer Representation ... 373
F.2.6 Array Storage ... 374
F.2.7 Arithmetic Operations on Exceptional Values ... 374

F.3 Argument-Passing Mechanism ... 376
F.3.1 32-Bit SPARC ... 376

G Performance Tuning (SPARC) ..379
G.1 Limits ... 379
G.2 libfast.a Library .. 380

H The Differences Between K&R Sun C and Sun ISO C ...381
H.1 K&R Sun C Incompatibilities With Sun ISO C .. 381
H.2 Keywords ... 387

Index ... 389

Contents

Sun Studio 12: C User's Guide •18

Preface

This manual describes the C compiler 5.9 for SunTM Studio 12. This manual is intended for
application developers who have a working knowledge of C, and UNIX®.

This manual provides information for many programming and compiler related topics
including the following:

■ A list of compiler options grouped by function such as optimization or debugging
■ An exhaustive, alphabetical, reference of compiler options
■ Descriptions of supported ISO/IEC 9899:1999 (referred to as C99 in this manual) features as

well as the details of Sun’s implementation of the standard
■ Information specific to this implementation of the C standard such as pragmas and

declaration specifiers
■ Description and reference for the lint code-checking program
■ Instructions for parallelizing code
■ Instructions for transitioning 32-bit code to 64-bit code

Typographic Conventions
TABLE P–1 Typeface Conventions Table

Typeface Meaning Examples

AaBbCc123 The names of commands, files, and
directories; on-screen computer
output

Edit your .login file.

Use ls -a to list all files.

% You have mail.

AaBbCc123 What you type, when contrasted
with on-screen computer output

% su

Password:

19

TABLE P–1 Typeface Conventions Table (Continued)
Typeface Meaning Examples

AaBbCc123 Book titles, new words or terms,
words to be emphasized

Read Chapter 6 in the User’s Guide.

These are called class options.

You must be superuser to do this.

AaBbCc123 Command-line placeholder text;
replace with a real name or value

To delete a file, type rm filename.

TABLE P–2 Code Conventions Table

Code Symbol Meaning Notation Code Example

[] Brackets contain
arguments that are
optional.

O[n] O4, O

{ } Braces contain a set of
choices for a required
option.

d{y|n} dy

| The “pipe” or “bar”
symbol separates
arguments, only one of
which may be chosen.

B{dynamic|static} Bstatic

: The colon, like the
comma, is sometimes used
to separate arguments.

Rdir[:dir] R/local/libs:/U/a

… The ellipsis indicates
omission in a series.

xinline=f1[,…fn] xinline=alpha,dos

Shell Prompts
The following table details shell prompts.

Shell Prompt

C shell machine-name%

C shell superuser machine-name#

Bourne shell, Korn shell, and GNU Bourne-Again shell $

Superuser for Bourne shell, Korn shell, and GNU
Bourne-Again shell

#

Preface

Sun Studio 12: C User's Guide •20

Supported Platforms
This Sun Studio release supports systems that use the SPARC® and x86 families of processor
architectures: UltraSPARC®, SPARC64, AMD64, Pentium, and Xeon EM64T. The supported
systems for the version of the Solaris Operating System you are running are available in the
hardware compatibility lists at http://www.sun.com/bigadmin/hcl. These documents cite any
implementation differences between the platform types.

In this document, these x86 related terms mean the following:

■ “x86” refers to the larger family of 64-bit and 32-bit x86 compatible products.
■ “x64’ points out specific 64-bit information about AMD64 or EM64T systems.
■ “32-bit x86” points out specific 32-bit information about x86 based systems.

For supported systems, see the hardware compatibility lists.

Accessing Sun Studio Documentation
You can access the documentation at the following locations:

■ The documentation is available from the documentation index that is installed with the
software on your local system or network at file:/opt/SUNWspro/docs/index.html on
Solaris platforms and at file:/opt/sun/sunstudio12/docs/index.html on Linux
platforms.

If your software is not installed in the /opt directory on a Solaris platform or the /opt/sun
directory on a Linux platform, ask your system administrator for the equivalent path on
your system.

■ Most manuals are available from the docs.sun.comsm web site. The following titles are
available through your installed software on Solaris platforms only:
■ Standard C++ Library Class Reference
■ Standard C++ Library User’s Guide
■ Tools.h++ Class Library Reference
■ Tools.h++ User’s Guide

The release notes are available from the http://docs.sun.com web site.
■ Online help for all components of the IDE is available through the Help menu, as well as

through Help buttons on many windows and dialog boxes, in the IDE.

The http://docs.sun.com web site enables you to read, print, and buy Sun Microsystems
manuals through the Internet. If you cannot find a manual, see the documentation index that is
installed with the software on your local system or network.

Preface

21

http://www.sun.com/bigadmin/hcl
http://docs.sun.com
http://docs.sun.com

Note – Sun is not responsible for the availability of third-party Web sites mentioned in this
document. Sun does not endorse and is not responsible or liable for any content, advertising,
products, or other materials that are available on or through such sites or resources. Sun will not
be responsible or liable for any actual or alleged damage or loss caused by or in connection with
the use of or reliance on any such content, goods, or services that are available on or through
such sites or resources.

Documentation in Accessible Formats
The documentation is provided in accessible formats that are readable by assistive technologies
for users with disabilities. You can find accessible versions of documentation as described in the
following table. If your software is not installed in the /opt directory, ask your system
administrator for the equivalent path on your system.

Type of Documentation Format and Location of Accessible Version

Manuals (except third-party manuals) HTML at http://docs.sun.com

Third-party manuals:
■ Standard C++ Library Class Reference
■ Standard C++ Library User’s Guide
■ Tools.h++ Class Library Reference
■ Tools.h++ User’s Guide

HTML in the installed software on Solaris platforms
through the documentation index at
file:/opt/SUNWspro/docs/index.html

Readmes HTML on the Sun Developer Network portal at
http://developers.sun.com/

sunstudio/documentation/ss12

Man pages HTML in the installed software through the
documentation index at
file:/opt/SUNWspro/docs/index.html on Solaris
platforms, and at
file:/opt/sun/sunstudio12/docs/index.html on
Linux platforms,

Online help HTML available through the Help menu and Help
buttons in the IDE

Release notes HTML at http://docs.sun.com

Preface

Sun Studio 12: C User's Guide •22

http://docs.sun.com
http://developers.sun.com/sunstudio/documentation/ss12
http://developers.sun.com/sunstudio/documentation/ss12
http://docs.sun.com

Related Sun Studio Documentation
The following table describes related documentation that is available at
file:/opt/SUNWspro/docs/index.html and http://docs.sun.com. If your software is not
installed in the /opt directory, ask your system administrator for the equivalent path on your
system.

Document Title Description

C User's Guide Provides a reference of all compiler options,
descriptions of supported ISO/IEC 9899:1999
(referred to as C99) features, implementation
specifics such as pragmas and declaration specifiers,
and complete information for using the lint
code-checking program.

C++ User's Guide Describes how to use the C++ compiler and
provides detailed information on command-line
compiler options, program organization, pragmas,
templates, exception handing, using the cast
operators, and using and building libraries.

Fortran Programming Guide Describes how to write effective Fortran programs
on Solaris environments; input/output, libraries,
performance, debugging, and parallelization.

Fortran Library Reference Details the Fortran library and intrinsics.

OpenMP API User’s Guide Summary of the OpenMP multiprocessing API, with
specifics about the implementation.

Numerical Computation Guide Describes issues regarding the numerical accuracy
of floating-point computations.

Accessing Related Solaris Documentation
The following table describes related documentation that is available through the
docs.sun.com web site.

Document Collection Document Title Description

Solaris Reference Manual
Collection

See the titles of man page
sections.

Provides information about the Solaris
OS.

Solaris Software Developer
Collection

Linker and Libraries Guide Describes the operations of the Solaris
link-editor and runtime linker.

Preface

23

http://docs.sun.com

Document Collection Document Title Description

Solaris Software Developer
Collection

Multithreaded Programming
Guide

Covers the POSIX and Solaris threads
APIs, programming with
synchronization objects, compiling
multithreaded programs, and finding
tools for multithreaded programs.

Resources for Developers
Visit the Sun Developer Network Sun Studio portal at
http://developers.sun.com/sunstudio to find these frequently updated resources:

■ Articles on programming techniques and best practices
■ A knowledge base of short programming tips
■ Documentation of the software, as well as corrections to the documentation that is installed

with your software
■ Information on support levels
■ User forums
■ Downloadable code samples
■ New technology previews

The Sun Studio portal is one of a number of additional resources for developers at the Sun
Developer Network website, http://developers.sun.com.

Contacting Sun Technical Support
If you have technical questions about this product that are not answered in this document, go
to:

http://www.sun.com/service/contacting

Sending Your Comments
Sun is interested in improving its documentation and welcomes your comments and
suggestions. Submit your comments to Sun at this URL:

http://www.sun.com/hwdocs/feedback

Please include the part number of the document in the subject line of your email. For example,
the part number for this document is 819-5265-10.

Preface

Sun Studio 12: C User's Guide •24

http://developers.sun.com/sunstudio
http://developers.sun.com
http://www.sun.com/service/contacting
http://www.sun.com/hwdocs/feedback

Introduction to the C Compiler

This chapter provides information about the following:
■ “1.1 New Features and Functionality of the Sun Studio 12 C 5.9 Compiler” on page 25.
■ “1.2 Standards Conformance” on page 27.
■ “1.3 C Readme File” on page 28.
■ “1.4 Man Pages” on page 28.
■ “1.5 Organization of the Compiler” on page 29.
■ “1.6 C-Related Programming Tools” on page 31.

1.1 New Features and Functionality of the Sun Studio 12 C
5.9 Compiler

This section provides a brief overview of the new C compiler features and functionality
introduced in the Sun Studio 12 C 5.9 Compiler release.
■ The C compiler is now available on the following Linux distributions (x86 and x64)

■ SuSE Linux Enterprise Server 9 with Service Pack 3 (or later).
■ Red Hat Enterprise Linux 4.
■ Other Linux distributions based on the 2.6 kernel though these are not officially

supported.
■ New -m32|-m64 options to determine the memory model.
■ New flags for -xarch replace obsolete flags.
■ New values for -xtarget and -xchip provide code generation for the UltraSPARC T2 and

SPARC64vi processors.
■ New flag -fma=fused to enable generation of fused multiply-add instructions on processors

that support them.
■ Explicit prefetch macros accepted on x86 platforms as well as SPARC platforms.

(-xprefetch=explicit)

1C H A P T E R 1

25

■ A new -xMD option which generates makefile dependencies. This is the same functionality as
with -xM, but includes compilation.

■ A new -xMF filename options allows you to specify a filename for makefile-dependency
output.

■ A new -xMMD option generates makefile dependencies excluding system headers.

1.1.1 Compiling for 64–Bit Platforms
The way to specify compilation of a 32-bit or 64-bit binary has changed in this release. The
“B.2.68 -xarch=isa” on page 243option no longer carries an implicit memory model, 32-bit
ILP32 or 64-bit LP64, with each definition, and is now used only to specify the instruction set of
the target processor.

Use the new “B.2.41 -m32|-m64” on page 234 options to specify the memory model of the target
compilation.

The ILP32 model specifies that C-language int, long, and pointer data types are all 32-bits wide.
The LP64 model specifies that long and pointer data types are all 64-bits wide. The Solaris and
Linux OS also support large files and large arrays under the LP64 memory model.

When you compile with -m64, the resulting executable works only on 64-bit UltraSPARC(R) or
x86 processors under Solaris OS or Linux OS running a 64-bit kernel. Compilation, link- ing,
and execution of 64-bit objects can only take place in a Solaris or Linux OS that supports 64-bit
execution.

1.1.2 Special x86 Notes
There are some important issues to be aware of when compiling for x86 Solaris platforms.

The legacy Sun-style parallelization pragmas are not available on x86. Use OpenMP instead. See
the Sun Studio 12: OpenMP API User’s Guide for information on converting legacy
parallelization directives to OpenMP.

Programs compiled with -xarch set to sse, sse2, sse2a, or sse3 must be run only on platforms
that provide these extensions and features.

Solaris OS releases starting with Solaris 9 4/04 are SSE/SSE2-enabled on Pentium 4-compatible
platforms. Earlier versions of Solaris OS are not SSE/SSE2-enabled. If an instruction set selected
by -xarch is not enabled in the running Solaris OS, the compiler will not be able to generate or
link code for that instruction set.

If you compile and link in separate steps, always link using the compiler and with same -xarch
setting to ensure that the correct startup routine is linked.

1.1 New Features and Functionality of the Sun Studio 12 C 5.9 Compiler

Sun Studio 12: C User's Guide •26

Numerical results on x86 might differ from results on SPARC due to the x86 80-bit
floating-point registers. To minimize these differences, use the -fstore option or compile with
x-arch=sse2 if the hardware supports SSE2.

Numerical results can also differ between Solaris and Linux because the intrinsic math libraries
(for example, sin(x)) are not the same.

1.1.3 Binary Compatibility Verification
Starting with Sun Studio 11 and the Solaris 10 OS, program binaries compiled and built using
these specialized -xarch hardware flags are verified that they are being run on the appropriate
platform.

On systems prior to Solaris 10, no verification is done and it is the user's responsibility to ensure
objects built using these flags are deployed on suitable hardware.

Running programs compiled with these -xarch options on platforms that are not enabled with
the appropriate features or instruction set extensions could result in segmentation faults or
incorrect results occurring without any explicit warning messages.

This warning extends also to programs that employ .il inline assembly language functions or
__asm() assembler code that utilize SSE, SSE2, SSE2a, and SSE3 instructions and extensions.

1.2 Standards Conformance
The term C99 used in this book refers to the ISO/IEC 9899:1999 C programming language. The
term C90 refers to the ISO/IEC 9899:1990 C programming language.

This compiler supports most of the language features specified in the ISO/IEC 9899:1999,
Programming Language - C standard on operating systems earlier than Solaris 10 software.
This compiler is in full compliance with the C99 standard on Solaris 10 software when you
specify -xc99=all,lib.

This compiler also conforms with the ISO/IEC 9899:1990, Programming Languages- C
standard.

Because the compiler also supports traditional K&R C (Kernighan and Ritchie, or pre-ANSI C),
it can ease your migration to ISO C.

For information on C90 implementation-specific behavior, see “D.1.17 _Pragma” on page 347.

For more information on supported C99 features, see Table C–6.

1.2 Standards Conformance

Chapter 1 • Introduction to the C Compiler 27

1.3 C Readme File
The C compiler’s readme file highlights important information about the compiler, including:

■ Information discovered after the manuals were printed
■ New and changed features
■ Software corrections
■ Problems and workarounds
■ Limitations and incompatibilities

To view the text version of the C readme file, type the following at a command prompt:

example% cc -xhelp=readme

To access the HTML version of the readme, in your Netscape Communicator 4.0 or compatible
version browser, open the following file:

/opt/SUNWspro/docs/index.html

(If your C compiler-software is not installed in the /opt directory, ask your system
administrator for the equivalent path on your system.) Your browser displays an index of
HTML documents. To open the readme, find its entry in the index, then click the title.

1.4 Man Pages
Online manual (man) pages provide immediate documentation about a command, function,
subroutine, or collection of such things.

You can display a man page by running the command:

example% man topic

Throughout the C documentation, man page references appear with the topic name and man
section number: cc(1) is accessed with man cc. Other sections, denoted by ieee_flags(3M) for
example, are accessed using the -s option on the man command:

example% man -s 3M ieee_flags

1.3 C Readme File

Sun Studio 12: C User's Guide •28

1.5 Organization of the Compiler
The C compilation system consists of a compiler, an assembler, and a link editor. The cc
command invokes each of these components automatically unless you use command-line
options to specify otherwise.

Table A–15 discusses all the options available with cc.

The following figure shows the organization of the C compilation system.

1.5 Organization of the Compiler

Chapter 1 • Introduction to the C Compiler 29

The following table summarizes the components of the compilation system.

FIGURE 1–1 Organization of the C Compilation System

1.5 Organization of the Compiler

Sun Studio 12: C User's Guide •30

TABLE 1–1 Components of the C Compilation System

Component Description Notes on Use

cpp Preprocessor -Xs only

acomp Compiler (preprocessor built in for non-Xs modes)

ssbd Static synchronization bug detection (SPARC)

iropt Code optimizer -O, -xO2, -xO3, -xO4, -xO5,
-fast

fbe Assembler

cg Code generator, inliner, assembler (SPARC)

ipo Interprocedural Optimizer (SPARC)

postopt Postoptimizer (SPARC)

ir2hf Intermediate code translator (x86)

ube Code generator (x86)

ube_ipa Interprocedure analyzer (x86)

ld Linker

mcs Manipulate comment section -mr

1.6 C-Related Programming Tools
There are a number of tools available to aid in developing, maintaining, and improving your C
programs. The two most closely tied to C, cscope and lint, are described in this book. In
addition, a man page exists for each of these tools.

Other tools for source browsing, debugging and performance analysis are available. See
“Accessing Sun Studio Documentation” on page 21 for more information.

1.6 C-Related Programming Tools

Chapter 1 • Introduction to the C Compiler 31

32

C-Compiler Information Specific to Sun’s
Implementation

This chapter documents those areas specific to the C compiler. The information is organized
into language extensions and the environment.

The C compiler is compatible with some of the features of the C language described in the new
ISO C standard, ISO/IEC 9899-1999. If you wish to compile code that is compatible with the
previous C standard, ISO/IEC 9889-1990 standard (and amendment 1), use -xc99=none and
the compiler disregards the enhancements of the ISO/IEC 9899-1999 standard.

2.1 Constants
This section contains information related to constants that are specific to the Sun C compiler.

2.1.1 Integral Constants
Decimal, octal, and hexadecimal integral constants can be suffixed to indicate type, as shown in
the following table.

TABLE 2–1 Data Type Suffixes

Suffix Type

u or U unsigned

l or L long

ll or LL long long
1

lu, LU, Lu, lU, ul, uL, Ul, or UL unsigned long

llu, LLU, LLu, llU, ull, ULL, uLL, Ull unsigned long long
1

1 The long long and unassigned long long are not available with -xc99=none and -Xc mode.

2C H A P T E R 2

33

With the -xc99=all, the compiler uses the first item of the following list in which the value can
be represented, as required by the size of the constant:

■ int

■ long int

■ long long int

The compiler issues a warning if the value exceeds the largest value a long long int can
represent.

With the -xc99=none, the compiler uses the first item of the following list in which the value can
be represented, as required by the size of the constant, when assigning types to unsuffixed
constants:

■ int

■ long int

■ unsigned long int

■ long long int

■ unsigned long long int

2.1.2 Character Constants
A multiple-character constant that is not an escape sequence has a value derived from the
numeric values of each character. For example, the constant ’123’ has a value of:

0 ’3’ ’2’ ’1’

or 0x333231.

With the -Xs option and in other, non-ISO versions of C, the value is:

0 ’1’ ’2’ ’3’

or 0x313233.

2.1 Constants

Sun Studio 12: C User's Guide •34

2.2 Linker Scoping Specifiers
Use the following declaration specifiers to help hide declarations and definitions of extern
symbols. By using these specifiers, you no longer need to use mapfiles for linker scoping. You
can also control the default setting for variable scoping by specifying -xldscope on the
command line. For more information, see “B.2.96 -xldscope={v}” on page 271.

TABLE 2–2 Declaration Specifiers

Value Meaning

__global The symbol has global linker scoping and is the least restrictive linker scoping. All
references to the symbol bind to the definition in the first dynamic module that
defines the symbol. This linker scoping is the current linker scoping for extern
symbols.

__symbolic The symbol has symbolic linker scoping and is more restrictive than global linker
scoping. All references to the symbol from within the dynamic module being
linked bind to the symbol defined within the module. Outside of the module, the
symbol appears as though it were global. This linker scoping corresponds to the
linker option -Bsymbolic. For more information on the linker, see ld(1).

__hidden The symbol has hidden linker scoping. Hidden linker scoping is more restrictive
than symbolic and global linker scoping. All references within a dynamic module
bind to a definition within that module. The symbol will not be visible outside of
the module.

An object or function may be redeclared with a more restrictive specifier, but may not be
redeclared with a less restrictive specifier. A symbol may not be declared with a different
specifier once the symbol has been defined.

__global is the least restrictive scoping, __symbolic is more restrictive, and __hidden is the
most restrictive scoping.

2.3 Thread Local Storage Specifier
Take advantage of thread-local storage by declaring thread-local variables. A thread-local
variable declaration consists of a normal variable declaration with the addition of the variable
specifier __thread. For more information, see “B.2.146 -xthreadvar[=o]” on page 308.

You must include the __thread specifier in the first declaration of the thread variable in the
source file being compiled.

You can only use the __thread specifier in the declaration of an object with static storage
duration. You can statically initialize a thread variable as you would any other object of
static-storage duration.

2.3 Thread Local Storage Specifier

Chapter 2 • C-Compiler Information Specific to Sun’s Implementation 35

Variables that you declare with the __thread specifier have the same linker binding as they
would without the __thread specifier. This includes tentative definitions, such as declarations
without initializers.

The address of a thread variable is not a constant. Therefore, the address-of operator (&) for a
thread variable is evaluated at run time and returns the address of the thread variable for the
current thread. As a consequence, objects of static storage duration are initialized dynamically
to the address of a thread variable.

The address of a thread variable is stable for the lifetime of the corresponding thread. Any
thread in the process can freely use the address of a thread variable during the variable’s lifetime.
You cannot use a thread variable’s address after its thread terminates. After a thread terminates,
all addresses of that thread’s variables are invalid.

2.4 Floating Point, Nonstandard Mode
IEEE 754 floating-point default arithmetic is “nonstop.” Underflows are “gradual.” The
following is a summary, see the Numerical Computation Guide for details.

Nonstop means that execution does not halt on occurrences like division by zero, floating-point
overflow, or invalid operation exceptions. For example, consider the following, where x is zero
and y is positive:

z = y / x;

By default, z is set to the value +Inf, and execution continues. With the -fnonstd option,
however, this code causes an exit, such as a core dump.

Here is how gradual underflow works. Suppose you have the following code:

x = 10;

for (i = 0; i < LARGE_NUMBER; i++)

x = x / 10;

The first time through the loop, x is set to 1; the second time through, to 0.1; the third time
through, to 0.01; and so on. Eventually, x reaches the lower limit of the machine’s capacity to
represent its value. What happens the next time the loop runs?

Let’s say that the smallest number characterizable is 1.234567e-38

The next time the loop runs, the number is modified by “stealing” from the mantissa and
“giving” to the exponent so the new value is 1.23456e-39 and, subsequently, 1.2345e-40 and
so on. This is known as “gradual underflow,” which is the default behavior. In nonstandard
mode, none of this “stealing” takes place; typically, x is simply set to zero.

2.4 Floating Point, Nonstandard Mode

Sun Studio 12: C User's Guide •36

2.5 Labels as Values
The C compiler recognizes the extension to C known as computed goto. Computed goto

enables runtime determination of branching destinations. The address of a label can be
acquired by using the ’&&’ operator and assigned to a pointer of type void *:

void *ptr;

...

ptr = &&label1;

A later goto statement can branch to label1 through ptr:

goto *ptr;

Because ptr is computed at runtime, ptr can take on the address of any label that is in-scope
and the goto statement can branch to it.

One way of using computed goto is for the implementation of a jump table:

static void *ptrarray[] = { &&label1, &&label2, &&label3 };

Now the array elements can be selected by indexing:

goto *ptrarray[i];

Addresses of labels can only be computed from the current function scope. Attempting to take
addresses of labels out of the current function yields unpredictable results.

The jump table works similarly to a switch statement though there are some key differences and
the jump table can make it more difficult to follow program flow. A notable difference is that the
switch-statement jump-destinations are all in the forward direction from the switch reserved
word; using computed goto to implement a jump table enables branching in both forward and
reverse directions.

#include <stdio.h>

void foo()

{

void *ptr;

ptr = &&label1;

goto *ptr;

printf("Failed!\n");
return;

label1:

2.5 Labels as Values

Chapter 2 • C-Compiler Information Specific to Sun’s Implementation 37

printf("Passed!\n");
return;

}

int main(void)

{

void *ptr;

ptr = &&label1;

goto *ptr;

printf("Failed!\n");
return 0;

label1:

foo();

return 0;

}

The following example also makes use of a jump table to control program flow:

#include <stdio.h>

int main(void)

{

int i = 0;

static void * ptr[3]={&&label1, &&label2, &&label3};

goto *ptr[i];

label1:

printf("label1\n");
return 0;

label2:

printf("label2\n");
return 0;

label3:

printf("label3\n");
return 0;

}

%example: a.out

%example: label1

2.5 Labels as Values

Sun Studio 12: C User's Guide •38

Another application of computed goto is as an interpreter for threaded code. The label
addresses within the interpreter function can be stored in the threaded code for fast
dispatching.

Here is an alternate way to write the above example:

static const int ptrarray[] = { &&label1 - &&label1, &&label2 - &&label1, &&label3 - &&label1 };

goto *(&&label1 + ptrarray[i]);

This is more efficient for shared library code, as it reduces the number of dynamic relocations
that are needed, and by consequence, allows the data (ptrarray elements) to be read-only.

2.6 long long Data Type
When you compile with -xc99=none, the Sun C compiler includes the data-types long long,
and unsigned long long, which are similar to the data-type long. The long long data-type
stores 64 bits of information; long stores 32 bits of information on SPARC V8 and x86. The
long data-type stores 64 bits on SPARC V9. The long long data-type is not available in -Xc

mode.

2.6.1 Printing long long Data Types
To print or scan long long data types, prefix the conversion specifier with the letters ll. For
example, to print llvar, a variable of long long data type, in signed decimal format, use:

printf("%lld\n", llvar);

2.6.2 Usual Arithmetic Conversions
Some binary operators convert the types of their operands to yield a common type, which is also
the type of the result. These are called the usual arithmetic conversions:
■ If either operand is type long double, the other operand is converted to long double.
■ Otherwise, if either operand has type double, the other operand is converted to double.
■ Otherwise, if either operand has type float, the other operand is converted to float.
■ Otherwise, the integral promotions are performed on both operands. Then, these rules are

applied:
■ If either operand has type unsigned long long int, the other operator is converted to

unsigned long long int.
■ If either operand has type long long int, the other operator is converted to long long

int.

2.6 long long Data Type

Chapter 2 • C-Compiler Information Specific to Sun’s Implementation 39

■ If either operand has type unsigned long int, the other operand is converted to
unsigned long int.

■ Otherwise, when you compile on SPARC V9 only and specify cc -xc99=none, if one
operand has type long int and the other has type unsigned int, both operands are
converted to unsigned long int.

■ Otherwise, if either operand has type long int, the other operand is converted to long

int.
■ Otherwise, if either operand has type unsigned int, the other operand is converted to

unsigned int.
■ Otherwise, both operands have type int.

2.7 Assertions
A line of the form:

#assert predicate (token-sequence)

associates the token-sequence with the predicate in the assertion name space (separate from the
space used for macro definitions). The predicate must be an identifier token.

#assert predicate

asserts that predicate exists, but does not associate any token sequence with it.

The compiler provides the following predefined predicates by default (not in -Xc mode):

#assert system (unix)

#assert machine (sparc)

#assert machine (i386)(x86)

#assert cpu (sparc)

#assert cpu (i386)(x86)

lint provides the following predefinition predicate by default (not in -Xc mode):

#assert lint (on)

Any assertion may be removed by using #unassert, which uses the same syntax as assert.
Using #unassert with no argument deletes all assertions on the predicate; specifying an
assertion deletes only that assertion.

An assertion may be tested in a #if statement with the following syntax:

#if #predicate(non-empty token-list)

For example, the predefined predicate system can be tested with the following line:

2.7 Assertions

Sun Studio 12: C User's Guide •40

#if #system(unix)

which evaluates true.

2.8 Pragmas
Preprocessing lines of the form:

#pragma pp-tokens

specify implementation-defined actions.

The following #pragmas are recognized by the compilation system. The compiler ignores
unrecognized pragmas. Using the -v option will give a warning for unrecognized pragmas.

2.8.1 align
#pragma align integer (variable[, variable])

The align pragma makes all the mentioned variables memory aligned to integer bytes,
overriding the default. The following limitations apply:

■ The integer value must be a power of 2 between 1 and 128; valid values are: 1, 2, 4, 8, 16, 32,
64, and 128.

■ variable is a global or static variable; it cannot be an automatic variable.
■ If the specified alignment is smaller than the default, the default is used.
■ The pragma line must appear before the declaration of the variables which it mentions;

otherwise, it is ignored.
■ Any variable that is mentioned but not declared in the text following the pragma line is

ignored. For example:

#pragma align 64 (aninteger, astring, astruct)

int aninteger;

static char astring[256];

struct astruct{int a; char *b;};

2.8.2 c99
#pragma c99(“implicit” | “no%implicit”)

This pragma controls diagnostics for implicit function declarations. If the c99 pragma value is
set to “implicit”, note the use of quotation marks, a warning is generated when the compiler

2.8 Pragmas

Chapter 2 • C-Compiler Information Specific to Sun’s Implementation 41

finds an implicit function declaration. If the c99 pragma value is set to “no%implicit”, note the
use of quotation marks, the compiler silently accepts implicit function declaration until the
pragma value is reset.

The value of the -xc99 option impacts this pragma. If -xc99=all, the pragma is set to #pragma

c99(“implicit”) and when -xc99=none, the pragma is set to #pragma c99(“no%implicit”).

This pragma is set to c99=(“implicit”) by default.

2.8.3 does_not_read_global_data
#pragma does_not_read_global_data (funcname [, funcname])

This pragma asserts that the specified list of routines do not read global data directly or
indirectly. This allows for better optimization of code around calls to such routines. In
particular, assignment statements or stores could be moved around such calls.

The specified functions must be declared with a prototype or empty parameter list prior to this
pragma. If the assertion about global access is not true, then the behavior of the program is
undefined.

2.8.4 does_not_return
#pragma does_not_return (funcname [, funcname])

This pragma is an assertion to the compiler that the calls to the specified routines will not
return. This allows the compiler to perform optimizations consistent with that assumption. For
example, register life-times will terminate at the call sites which in turn allows more
optimizations.

If the specified function does return, then the behavior of the program is undefined. This
pragma is permitted only after the specified functions are declared with a prototype or empty
parameter list as the following example shows:

extern void exit(int);

#pragma does_not_return(exit)

extern void __assert(int);

#pragma does_not_return(__assert)

2.8.5 does_not_write_global_data
#pragma does_not_write_global_data (funcname [, funcname])

2.8 Pragmas

Sun Studio 12: C User's Guide •42

This pragma asserts that the specified list of routines do not write global data directly or
indirectly. This allows for better optimization of code around calls to such routines. In
particular, assignment statements or stores could be moved around such calls.

The specified functions must be declared with a prototype or empty parameter list prior to this
pragma. If the assertion about global access is not true, then the behavior of the program is
undefined.

2.8.6 error_messages
#pragma error_messages (on|off|default, tag… tag)

The error message pragma provides control within the source program over the messages
issued by the C compiler and lint. For the C compiler, the pragma has an effect on warning
messages only. The -w option of the C compiler overrides this pragma by suppressing all
warning messages.
■ #pragma error_messages (on, tag… tag)

The on option ends the scope of any preceding #pragma error_messages option, such as
the off option, and overrides the effect of the -erroff option.

■ #pragma error_messages (off, tag… tag)
The off option prevents the C compiler or the lint program from issuing the given messages
beginning with the token specified in the pragma. The scope of the pragma for any specified
error message remains in effect until overridden by another #pragma error_messages, or
the end of compilation.

■ #pragma error_messages (default, tag… tag)
The default option ends the scope of any preceding #pragma error_messages directive for
the specified tags.

2.8.7 fini
#pragma fini (f1[, f2…,fn]

Causes the implementation to call functions f1 to fn (finalization functions) after it calls main()
routine. Such functions are expected to be of type void and to accept no arguments, and are
called either when a program terminates under program control or when the containing shared
object is removed from memory. As with “initialization functions,” finalization functions are
executed in the order processed by the link editors.

You should be careful when a finalization function affects the global-program state. For
example, unless an interface explicitly states what happens when you use a system-library
finalization-function, you should capture and restore any global state information, such as the
value of errno, that the system-library finalization-function may change.

2.8 Pragmas

Chapter 2 • C-Compiler Information Specific to Sun’s Implementation 43

2.8.8 hdrstop
#pragma hdrstop

The hdrstop pragma must be placed after the last header file to identify the end of the viable
prefix in each source file that is to share the same precompiled-header file. For example,
consider the following files:

example% cat a.c

#include "a.h"
#include "b.h"
#include "c.h"
#include <stdio.h>

#include "d.h"
.

.

.

example% cat b.h

#include "a.h"
#include "b.h"
#include "c.h"

The viable source prefix ends at c.h so you would insert a #pragma hdrstop after c.h in each file.

#pragma hdrstop must only appear at the end of the viable prefix of a source file that is specified
with the cc command. Do not specify #pragma hdrstop in any include file.

2.8.9 ident
#pragma ident string

Places string in the .comment section of the executable.

2.8.10 init
#pragma init (f1[, f2…,fn])

Causes the implementation to call functions f1 to fn (initialization functions) before it calls
main(). Such functions are expected to be of type void and to accept no arguments, and are
called while constructing the memory image of the program at the start of execution. In the case
of initializers in a shared object, they are executed during the operation that brings the shared
object into memory, either program start-up or some dynamic loading operation, such as
dlopen(). The only ordering of calls to initialization functions is the order in which they were
processed by the link editors, both static and dynamic.

2.8 Pragmas

Sun Studio 12: C User's Guide •44

You should be careful when an initialization function affects the global-program state. For
example, unless an interface explicitly states what happens when you use a system-library
initialization-function, you should capture and restore any global state information, such as the
value of errno, that the system-library initialization-function may change.

2.8.11 inline
#pragma [no_]inline (funcname[, funcname])

This pragma controls the inlining of routine names listed in the argument of the pragma. The
scope of this pragma is over the entire file. Only global inlining control is allowed, call-site
specific control is not permitted by this pragma.

If you use #pragma inline, it provides a suggestion to the compiler to inline the calls in the
current file that match the list of routines listed in the pragma. This suggestion may be ignored
under certain cases. For example, the suggestion is ignored when the body of the function is in a
different module and the crossfile option is not used.

If you use #pragma no_inline, it provides a suggestion to the compiler to not inline the calls in
the current file that match the list of routines listed in the pragma.

Both #pragma inline and #pragma no_inline are permitted only after the function is declared
with a prototype or empty parameter list as the following example shows:

static void foo(int);

static int bar(int, char *);

#pragma inline(foo, bar)

See also -xldscope, -xinline, -xO, and -xcrossfile.

2.8.12 int_to_unsigned
#pragma int_to_unsigned (funcname)

For a function that returns a type of unsigned, in -Xt or -Xs mode, changes the function
return to be of type int.

2.8.13 MP serial_loop
(SPARC) #pragma MP serial_loop

2.8 Pragmas

Chapter 2 • C-Compiler Information Specific to Sun’s Implementation 45

Note – The Sun-specific MP pragmas have been deprecated and are no longer supported.
However, the compiler supports the APIs specified by the OpenMP 2.5 standard instead. See the
OpenMP API User’s Guide for migration information to the directives of the standard.

Refer to “3.8.3.1 Serial Pragmas” on page 81 for details.

2.8.14 MP serial_loop_nested
(SPARC) #pragma MP serial_loop_nested

Note – The Sun-specific MP pragmas have been deprecated and are no longer supported.
However, the compiler supports the APIs specified by the OpenMP 2.5 standard instead. See the
Sun Studio 12: OpenMP API User’s Guidefor migration information to the directives of the
standard.

Refer to “3.8.3.1 Serial Pragmas” on page 81 for details.

2.8.15 MP taskloop
(SPARC) #pragma MP taskloop

Note – The Sun-specific MP pragmas have been deprecated and are no longer supported.
However, the compiler supports the APIs specified by the OpenMP 2.5 standard instead. See the
OpenMP API User’s Guide for migration information to the directives of the standard.

Refer to “3.8.3.2 Parallel Pragma” on page 82 for details.

2.8.16 nomemorydepend
(SPARC) #pragma nomemorydepend

This pragma specifies that for any iteration of a loop, there are no memory dependences. That
is, within any iteration of a loop there are no references to the same memory. This pragma will
permit the compiler (pipeliner) to schedule instructions, more effectively, within a single
iteration of a loop. If any memory dependences exist within any iteration of a loop, the results of
executing the program are undefined. The compiler takes advantage of this information at
optimization level of 3 or above.

2.8 Pragmas

Sun Studio 12: C User's Guide •46

The scope of this pragma begins with the pragma and ends with which ever of the following
occurs first: the beginning of the next block, the next for loop within the current block, the end
of the current block. The pragma applies to the next for loop prior to the end of the pragmas
scope.

2.8.17 no_side_effect
(SPARC) #pragma no_side_effect(funcname[, funcname…])

funcname specifies the name of a function within the current translation unit. The function
must be declared with a prototype or empty parameter list prior to the pragma. The pragma
must be specified prior to the function’s definition. For the named function, funcname, the
pragma declares that the function has no side effects of any kind. This means that funcname
returns a result value that depends only on the passed arguments. In addition, funcname and
any called descendants:

■ Do not access for reading or writing any part of the program state visible in the caller at the
point of the call.

■ Do not perform I/O.
■ Do not change any part of the program state not visible at the point of the call.

The compiler can use this information when doing optimizations using the function. If the
function does have side effects, the results of executing a program which calls this function are
undefined. The compiler takes advantage of this information at optimization level of 3 or above.

2.8.18 opt
#pragma opt level (funcname[, funcname])

funcname specifies the name of a function defined within the current translation unit. The value
of level specifies the optimization level for the named function. You can assign optimization
levels 0, 1, 2, 3, 4, 5. You can turn off optimization by setting level to 0. The functions must be
declared with a prototype or empty parameter list prior to the pragma. The pragma must
proceed the definitions of the functions to be optimized.

The level of optimization for any function listed in the pragma is reduced to the value of
-xmaxopt. The pragma is ignored when -xmaxopt=off.

2.8.19 pack
#pragma pack(n)

2.8 Pragmas

Chapter 2 • C-Compiler Information Specific to Sun’s Implementation 47

Use #pragma pack(n)to affect member packing of a structure or a union. By default, members
of a structure or union are aligned on their natural boundaries; one byte for a char, two bytes for
a short, four bytes for an integer etc. If n is present, it must be a power of 2 specifying the
strictest natural alignment for any structure or union member. Zero is not accepted.

You can use #pragma pack(n) to specify an alignment boundary for a structure or union
member. For example, #pragma pack(2) aligns int, long, long long, float, double, long double,
and pointers on two byte boundaries instead of their natural alignment boundaries.

If n is the same or greater than the strictest alignment on your platform, (four on x86, eight on
SPARC v8, and 16 on SPARC v9), the directive has the effect of natural alignment. Also, if n is
omitted, member alignment reverts to the natural alignment boundaries.

The #pragma pack(n) directive applies to all structure or union definitions which follow it until
the next pack directive. If the same structure or union is defined in different translation units
with different packing, your program may fail in unpredictable ways. In particular, you should
not use #pragma pack(n) prior to including a header that defines the interface of a precompiled
library. The recommended usage of #pragma pack(n) is to place it in your program code
immediately before any structure or union to be packed. Follow the packed structure
immediately with #pragma pack().

Note that when you use #pragma pack, the alignment of the packed structure or union itself is
the same as its more strictly aligned member. Therefore any declaration of that struct or union
will be at the pack alignment. For example, a struct with only chars has no alignment
restrictions, whereas a struct containing a double would be aligned on an 8-byte boundary.

Note – If you use #pragma pack to align struct or union members on boundaries other than their
natural boundaries, accessing these fields usually leads to a bus error on SPARC. In order to
avoid such an error, be sure to also specify the -xmemalign option. See “B.2.111
-xmemalign=ab” on page 277 , for the optimal way to compile such programs.

2.8.20 pipeloop
(SPARC) #pragma pipeloop(n)

This pragma accepts a positive constant integer value, or 0, for the argument n. This pragma
specifies that a loop is pipelineable and the minimum dependence distance of the loop-carried
dependence is n. If the distance is 0, then the loop is effectively a Fortran-style doall loop and
should be pipelined on the target processors. If the distance is greater than 0, then the compiler
(pipeliner) will only try to pipeline n successive iterations. The compiler takes advantage of this
information at optimization level of 3 or above.

2.8 Pragmas

Sun Studio 12: C User's Guide •48

The scope of this pragma begins with the pragma and ends with which ever of the following
occurs first: the beginning of the next block, the next for loop within the current block, the end
of the current block. The pragma applies to the next for loop prior to the end of the pragmas
scope.

2.8.21 rarely_called
#pragma rarely_called(funcname[, funcname])

This pragma provides a hint to the compiler that the specified functions are called infrequently.
This allows the compiler to perform profile-feedback style optimizations on the call-sites of
such routines without the overhead of a profile-collections phase. Since this pragma is a
suggestion, the compiler may not perform any optimizations based on this pragma.

The specified functions must be declared with a prototype or empty parameter list prior to this
pragma. The following is an example of #pragma rarely_called:

extern void error (char *message);

#pragma rarely_called(error)

2.8.22 redefine_extname
#pragma redefine_extname old_extname new_extname

This pragma causes every externally defined occurrence of the name old_extname in the object
code to be replaced by new_extname. As a result, the linker only sees the name new_extname at
link time. If #pragma redefine_extname is encountered after the first use of old_extname, as a
function definition, an initializer, or an expression, the effect is undefined. (This pragma is not
supported in– Xs mode.)

When #pragma redefine_extname is available, the compiler provides a definition of the
predefined macro __PRAGMA_REDEFINE_EXTNAME, which lets you write portable code that works
both with and without #pragma redefine_extname.

The purpose of #pragma redefine_extname is to allow an efficient means of redefining a
function interface when the name of the function cannot be changed. For example, when the
original function definition must be maintained in a library, for compatibility with existing
programs, along with a new definition of the same function for use by new programs. This can
be accomplished by adding the new function definition to the library by a new name.
Consequently, the header file that declares the function uses #pragma redefine_extname so
that all of the uses of the function are linked with the new definition of that function.

#if defined(__STDC__)

#ifdef __PRAGMA_REDEFINE_EXTNAME

2.8 Pragmas

Chapter 2 • C-Compiler Information Specific to Sun’s Implementation 49

extern int myroutine(const long *, int *);

#pragma redefine_extname myroutine __fixed_myroutine

#else /* __PRAGMA_REDEFINE_EXTNAME */

static int

myroutine(const long * arg1, int * arg2)

{

extern int __myroutine(const long *, int*);

return (__myroutine(arg1, arg2));

}

#endif /* __PRAGMA_REDEFINE_EXTNAME */

#else /* __STDC__ */

#ifdef __PRAGMA_REDEFINE_EXTNAME

extern int myroutine();

#pragma redefine_extname myroutine __fixed_myroutine

#else /* __PRAGMA_REDEFINE_EXTNAME */

static int

myroutine(arg1, arg2)

long *arg1;

int *arg2;

{

extern int __fixed_myroutine();

return (__fixed_myroutine(arg1, arg2));

}

#endif /* __PRAGMA_REDEFINE_EXTNAME */

#endif /* __STDC__ */

2.8.23 returns_new_memory
#pragma returns_new_memory (funcname[, funcname])

This pragma asserts that the return value of the specified functions does not alias with any
memory at the call site. In effect, this call returns a new memory location. This informations
allows the optimizer to better track pointer values and clarify memory location. This results in
improved scheduling, pipelining, and parallelization of loops. However, if the assertion is false,
the behavior of the program is undefined.

This pragma is permitted only after the specified functions are declared with a prototype or
empty parameter list as the following example shows:

void *malloc(unsigned);

#pragma returns_new_memory(malloc)

2.8 Pragmas

Sun Studio 12: C User's Guide •50

2.8.24 unknown_control_flow
#pragma unknown_control_flow (funcname[, funcname])

In order to describe procedures that alter the flow graphs of their callers, the C compiler
provides the #pragma unknown_control_flow directive. Typically, this directive accompanies
declarations of functions like setjmp(). On Sun systems, the include file <setjmp.h> contains
the following:

extern int setjmp();

#pragma unknown_control_flow(setjmp)

Other functions with properties like those of setjmp() must be declared similarly.

In principle, an optimizer that recognizes this attribute could insert the appropriate edges in the
control flow graph, thus handling function calls safely in functions that call setjmp(), while
maintaining the ability to optimize code in unaffected parts of the flow graph.

The specified functions must be declared with a prototype or empty parameter list prior to this
pragma.

2.8.25 unroll
(SPARC) #pragma unroll (unroll_factor)

This pragma accepts a positive constant integer value for the argument unroll_factor. For unroll
factor other than 1, this directive serves as a suggestion to the compiler that the specified loop
should be unrolled by the given factor. The compiler will, when possible, use that unroll factor.
When the unroll factor value is 1, this directive serves as a command which specifies to the
compiler that the loop is not to be unrolled. The compiler takes advantage of this information at
optimization level of 3 or above.

The scope of this pragma begins with the pragma and ends with which ever of the following
occurs first: the beginning of the next block, the next for loop within the current block, the end
of the current block. The pragma applies to the next for loop prior to the end of the pragmas
scope.

2.8.26 warn_missing_parameter_info
#pragma [no_]warn_missing_parameter_info

When you specify #pragma warn_missing_parameter_info, the compiler issues a warning for
a function call whose function declaration contains no parameter type information. Consider
the following example:

2.8 Pragmas

Chapter 2 • C-Compiler Information Specific to Sun’s Implementation 51

exmaple% cat -n t.c

1 #pragma warn_missing_parameter_info

2

3 int foo();

4

5 int bar () {

6

7 int i;

8

9 i = foo(i);

10

11 return i;

12 }

% cc t.c -c -errtags

"t.c", line 9: warning: function foo has no prototype (E_NO_MISSED_PARAMS_ALLOWED)

example%

#pragma no_warn_missing_parameter_info turns off the effect of any previous #pragma
warn_missing_parameter_info.

By default, #pragma no_warn_missing_parameter_info is in effect.

2.8.27 weak
#pragma weak symbol1 [= symbol2]

Defines a weak global symbol. This pragma is used mainly in source files for building libraries.
The linker does not produce an error message if it is unable to resolve a weak symbol.

#pragma weak symbol

defines symbol to be a weak symbol. The linker does not produce an error message if it does not
find a definition for symbol.

#pragma weak symbol1 = symbol2

defines symbol1 to be a weak symbol, which is an alias for the symbol symbol2. This form of the
pragma can only be used in the same translation unit where symbol2 is defined, either in the
sourcefiles or one of its included headerfiles. Otherwise, a compilation error will result.

If your program calls but does not define symbol1, and symbol1 is a weak symbol in a library
being linked, the linker uses the definition from that library. However, if your program defines
its own version of symbol1, then the program’s definition is used and the weak global definition
of symbol1 in the library is not used. If the program directly calls symbol2, the definition from
the library is used; a duplicate definition of symbol2 causes an error.

2.8 Pragmas

Sun Studio 12: C User's Guide •52

2.9 Predefined Names
The following identifier is predefined as an object-like macro:

TABLE 2–3 Predefined Identifier

Identifier Description

__STDC__ __STDC__ 1 -Xc

__STDC__ 0 -Xa, -Xt

Not defined -Xs

The compiler issues a warning if __STDC__ is undefined (#undef __STDC__). __STDC__ is not
defined in -Xs mode.

Predefinitions (not valid in -Xc mode):

■ sun

■ unix

■ sparc (SPARC)
■ i386 (x86)

The following predefinitions are valid in all modes:

■ __sun

■ __unix

■ __SUNPRO_C=0x580

■ __”uname -s”_”uname -r” (example: __SunOS_5_7)
■ __sparc (SPARC)
■ __i386 (x86)
■ __BUILTIN_VA_ARG_INCR

■ __SVR4

■ __sparcv9 (-Xarch=v9, v9a)

The compiler also predefines the object-like macro __PRAGMA_REDEFINE_EXTNAME to indicate
that the pragma will be recognized. The following is predefined in -Xa and -Xt modes only:

__RESTRICT

2.9 Predefined Names

Chapter 2 • C-Compiler Information Specific to Sun’s Implementation 53

2.10 The Value of errno
If you specify -fast, you should not rely on the value of errno because the value can change as a
result of code optimization. The easiest way to avoid this problem is to not specify -fast.

If, however, you specify -fast and you are relying on the value of errno, do the following:
■ Do not link with the math optimization library by specifying -lmopt.
■ Specify -xbuiltin=none, -U__MATHERR_ERRNO_DONTCARE, -xnolibmopt, and -xnolibmil.

2.11 _RestrictKeyword
The C compiler supports the _Restrict keyword as an equivalent to the restrict keyword in
the C99 standard. The _Restrict keyword is available with -xc99=none and -xc99=all,
whereas the restrict keyword is only available with -xc99=all.

For more information on supported C99 features, see Table C–6.

2.12 _ _asm Keyword
The _ _asm keyword (note the initial double-underscore) is a synonym for the asm keyword. If
you use asm, rather than _ _asm, and compile in– Xc mode, the compiler issues a warning. The
compiler does not issue a warning if you use _ _asm in– Xc mode. The _ _asm statement has the
form:

_ _asm("string");

where string is a valid assembly language statement. The _ _asm statements must appear within
function bodies.

2.13 Environment Variables
This section lists the environment variables that let you control the compilation and runtime
environment.

2.13.1 OMP_DYNAMIC

Enable or disable dynamic adjustment of the number of threads.

2.13.2 OMP_NESTED

Enable or disable nested parallelism.

2.10 The Value of errno

Sun Studio 12: C User's Guide •54

2.13.3 OMP_NUM_THREADS

Set the number of threads to use during execution.

2.13.4 OMP_SCHEDULE

Set the run-time schedule type and chunk size.

2.13.5 PARALLEL

(SPARC) Specifies the number of processors available to the program for multiprocessor
execution. If the target machine has multiple processors, the threads can map to independent
processors. Running the program leads to the creation of two threads that execute the
parallelized portions of the program.

2.13.6 SUN_PROFDATA

Controls the name of the file in which the -xprofile=collect command stores
execution-frequency data.

2.13.7 SUN_PROFDATA_DIR

Controls in which directory the -xprofile=collect command places the execution-frequency
data-file.

2.13.8 SUNPRO_SB_INIT_FILE_NAME

The absolute path name of the directory containing the .sbinit(5) file. This variable is used
only if the -xsb or -xsbfast flag is used.

2.13.9 SUNW_MP_THR_IDLE

Controls end-of-task status of each helper thread and can be set to spin ns, or sleep nms. The
default is sleep. See the OpenMP API User’s Guide for details.

2.13 Environment Variables

Chapter 2 • C-Compiler Information Specific to Sun’s Implementation 55

2.13.10 TMPDIR

cc normally creates temporary files in the directory /tmp. You can specify another directory by
setting the environment variable TMPDIR to the directory of your choice. However, if TMPDIR is
not a valid directory, cc uses /tmp. The -xtemp option has precedence over the TMPDIR
environment variable.

If you use a Bourne shell, type:

$ TMPDIR=dir; export TMPDIR

If you use a C shell, type:

% setenv TMPDIR dir

2.14 How to Specify Include Files
To include any of the standard header files supplied with the C compilation system, use this
format:

#include <stdio.h>

The angle brackets (<>) cause the preprocessor to search for the header file in the standard place
for header files on your system, usually the /usr/include directory.

The format is different for header files that you have stored in your own directories:

#include "header.h"

For statements of the form #include "foo.h" (where quotation marks are used), the compiler
searches for include files in the following order:

1. The current directory (that is, the directory containing the “including” file)
2. The directories named with -I options, if any
3. The /usr/include directory

If your header file is not in the same directory as the source files that include it, specify the path
of the directory in which it is stored with the– I option to cc. Suppose, for instance, that you
have included both stdio.h and header.h in the source file mycode.c:

#include <stdio.h>

#include "header.h"

Suppose further that header.h is stored in the directory../defs. The command:

% cc– I../defs mycode.c

2.14 How to Specify Include Files

Sun Studio 12: C User's Guide •56

directs the preprocessor to search for header.h first in the directory containing mycode.c, then
in the directory ../defs, and finally in the standard place. It also directs the preprocessor to
search for stdio.h first in ../defs, then in the standard place. The difference is that the current
directory is searched only for header files whose names you have enclosed in quotation marks.

You can specify the– I option more than once on the cc command-line. The preprocessor
searches the specified directories in the order they appear. You can specify multiple options to
cc on the same command-line:

% cc– o prog– I../defs mycode.c

2.14.1 Using the -I-Option to Change the Search Algorithm
The new -I- option gives more control over the default search rules. Only the first -I- option
on the command line works as described in this section. When -I- appears in the command
line:

For include files of the form #include "foo.h", search the directories in the following order:

1. The directories named with -I options (both before and after -I-).

2. The directories for compiler-provided C++ header files, ANSI C header files, and
special-purpose files.

3. The /usr/include directory.

For include files of the form #include <foo.h>, search the directories in the following order:

1.The directories named in the -I options that appear after -I-.

2. The directories for compiler-provided C++ header files, ANSI C header files, and
special-purpose files.

3. The /usr/include directory.

The following example shows the results of using -I- when compiling prog.c.

prog.c

#include "a.h"

#include <b.h>

#include "c.h"

c.h

#ifndef _C_H_1

2.14 How to Specify Include Files

Chapter 2 • C-Compiler Information Specific to Sun’s Implementation 57

#define _C_H_1

int c1;

#endif

int/a.h

#ifndef _A_H

#define _A_H

#include "c.h"

int a;

#endif

int/b.h

#ifndef _B_H

#define _B_H

#include <c.h>

int b;

#endif

int/c.h

#ifndef _C_H_2

#define _C_H_2

int c2;

#endif

The following command shows the default behavior of searching the current directory (the
directory of the including file) for include statements of the form #include "foo.h". When
processing the #include "c.h" statement in inc/a.h, the preprocessor includes the c.h header
file from the inc subdirectory. When processing the #include "c.h" statement in prog.c, the
preprocessor includes the c.h file from the directory containing prog.c. Note that the -H
option instructs the compiler to print the paths of the included files.

example% cc -c -Iinc -H prog.c

inc/a.h

2.14 How to Specify Include Files

Sun Studio 12: C User's Guide •58

inc/c.h

inc/b.h

inc/c.h

c.h

The next command shows the effect of the -I- option. The preprocessor does not look in the
including directory first when it processes statements of the form #include "foo.h". Instead, it
searches the directories named by the -I options in the order that they appear in the command
line. When processing the #include "c.h" statement in inc/a.h, the preprocessor includes the
./c.h header file instead of the inc/c.h header file.

example% cc -c -I. -I- -Iinc -H prog.c

inc/a.h

./c.h

inc/b.h

inc/c.h

./c.h

2.14.1.1 Warnings
Never specify the compiler installation area, /usr/include, /lib, or /usr/lib, as search
directories.

For more information, see “B.2.34 -I[-|dir]” on page 233.

2.14 How to Specify Include Files

Chapter 2 • C-Compiler Information Specific to Sun’s Implementation 59

60

Parallelizing Sun C Code

The Sun C compiler can optimize code to run on SPARC shared-memory multiprocessor
machines. The process is called parallelizing. The compiled code can execute in parallel using
the multiple processors on the system. This chapter explains how you can take advantage of the
compiler’s parallelizing features.

3.1 Overview
The C compiler generates parallel code for those loops that it determines are safe to parallelize.
Typically, these loops have iterations that are independent of each other. For such loops, it does
not matter in what order the iterations are executed or if they are executed in parallel. Many,
though not all, vector loops fall into this category.

Because of the way aliasing works in C, it is difficult to determine the safety of parallelization.
To help the compiler, Sun C offers pragmas and additional pointer qualifications to provide
aliasing information known to the programmer that the compiler cannot determine. See
Chapter 5, “Type-Based Alias Analysis,” for more information.

3.1.1 Example of Use
The following example illustrates how to enable and control parallelized C:

% cc -fast -xO4 -xautopar example.c -o example

This generates an executable called example, which can be executed normally. If you wish to
take advantage of multiprocessor execution, see “B.2.69 -xautopar” on page 250.

3C H A P T E R 3

61

3.2 Parallelizing for OpenMP
You can compile your code so that it complies with the OpenMP specification. For more
information on the OpenMP specification for C, visit the web site at
http://www.openmp.org/specs/.

To take advantage of the compiler’s OpenMP support, you need to issue the compiler’s
-xopenmp option. See “B.2.118 -xopenmp[=i]” on page 282.

See the OpenMP API User’s Guide for migration information to the directives of the standard.

3.2.1 Handling OpenMP Runtime Warnings
The OpenMP runtime system can issue warnings for non-fatal errors. Use the following
function to register a call back function to handle these warnings:

int sunw_mp_register_warn(void (*func) (void *))

You can access the prototype for this function by issuing a #include preprocessor directive for
<sunw_mp_misc.h>.

If you do not want to register a function, set the environment variable SUNW_MP_WARN to TRUE

and the warning messages are sent to stderr. For more information on SUNW_MP_WARN, see
“SUNW_MP_WARN” on page 63.

For information specific to this implementation of OpenMP, see the OpenMP API User’s Guide.

3.3 Environment Variables
There are four environment variables that relate to parallelized C:

■ PARALLEL

■ SUNW_MP_THR_IDLE

■ SUNW_MP_WARN

■ STACKSIZE

3.3.1 PARALLEL

Set the PARALLEL environment variable if you can take advantage of multiprocessor execution.
The PARALLEL environment variable specifies the number of processors available to the
program. The following example shows that PARALLEL is set to two:

% setenv PARALLEL 2

3.2 Parallelizing for OpenMP

Sun Studio 12: C User's Guide •62

If the target machine has multiple processors, the threads can map to independent processors.
Running the program leads to the creation of two threads that execute the parallelized portions
of the program.

3.3.1.1 SUNW_MP_THR_IDLE

Currently, the starting thread of a program creates bound threads. Once created, these bound
threads participate in executing the parallel part of a program (parallel loop, parallel region,
etc.) and keep spin-waiting while the sequential part of the program runs. These bound threads
never sleep or stop until the program terminates. Having these threads spin-wait generally gives
the best performance when a parallelized program runs on a dedicated system. However,
threads that are spin-waiting use system resources.

Use the SUNW_MP_THR_IDLE environment variable to control the status of each thread after it
finishes its share of a parallel job.

% setenv SUNW_MP_THR_IDLE value

You can substitute either spin or sleep[n s|n ms] for value. The default is sleep, which means
the thread should spin (or busy-wait) after completing a parallel task, until a new parallel task
arrives.

The other choice, sleep[n s|n ms] puts the thread to sleep after spin-waiting n units. The wait
unit can be seconds (s, the default unit) or milliseconds (ms), where 1s means one second, and
10ms means ten milliseconds. sleep with no arguments puts the thread to sleep immediately
after completing a parallel task. sleep, sleep0, sleep0s, and sleep0ms are all equivalent.

If a new job arrives before n units is reached, the thread stops spin-waiting and starts doing the
new job. If SUNW_MP_THR_IDLE contains an illegal value or isn’t set, sleep is used as the default.

SUNW_MP_WARN

Set this environment variable to TRUE to print warning messages from OpenMP and other
parallelization runtime-systems.

% setenv SUNW_MP_WARN TRUE

If you registered a function by using sunw_mp_register_warn() to handle warning messages,
then SUNW_MP_WARN prints no warning messages, even if you set it to TRUE. If you did not register
a function and set SUNW_MP_WARN to TRUE, SUNW_MP_WARN prints the warning messages to
stderr. If you do not register a function and you do not set SUNW_MP_WARN, no warning
messages are issued. For more information on sunw_mp_register_warn() see “3.2.1 Handling
OpenMP Runtime Warnings” on page 62.

3.3 Environment Variables

Chapter 3 • Parallelizing Sun C Code 63

STACKSIZE

The executing program maintains a main memory stack for the master thread and distinct
stacks for each slave thread. Stacks are temporary memory address spaces used to hold
arguments and automatic variables over subprogram invocations.

The default size of the main stack is about eight megabytes. Use the limit command to display
the current main stack size as well as set it.

% limit

cputime unlimited

filesize unlimited

datasize 2097148 kbytes

stacksize 8192 kbytes <- current main stack size

coredumpsize 0 kbytes

descriptors 256

memorysize unlimited

% limit stacksize 65536 <- set main stack to 64Mb

Each slave thread of a multithreaded program has its own thread stack. This stack mimics the
main stack of the master thread but is unique to the thread. The thread’s private arrays and
variables (local to the thread) are allocated on the thread stack.

All slave threads have the same stack size, which is four megabytes for 32-bit applications and
eight megabytes for 64-bit applications by default. The size is set with the STACKSIZE
environment variable:

% setenv STACKSIZE 16483 <- Set thread stack size to 16 Mb

Setting the thread stack size to a value larger than the default may be necessary for some
parallelized code.

Sometimes the compiler may generate a warning message that indicates a bigger stack size is
needed. However, it may not be possible to know just how large to set it, except by trial and
error, especially if private/local arrays are involved. If the stack size is too small for a thread to
run, the program will abort with a segmentation fault.

3.3.1.2 Keyword
The keyword restrict can be used with parallelized C. The proper use of the keyword restrict
helps the optimizer in understanding the aliasing of data required to determine if a code
sequence can be parallelized. Refer to “D.1.2 C99 Keywords” on page 339 for details.

3.3 Environment Variables

Sun Studio 12: C User's Guide •64

3.4 Data Dependence and Interference
The C compiler performs analysis on loops in programs to determine if it is safe to execute
different iterations of the loops in parallel. The purpose of this analysis is to determine if any
two iterations of the loop could interfere with each other. Typically this happens if one iteration
of a variable could read a variable while another iteration is writing the very same variable.
Consider the following program fragment:

EXAMPLE 3–1 A Loop With Dependence

for (i=1; i < 1000; i++) {

sum = sum + a[i]; /* S1 */

}

In “3.4 Data Dependence and Interference” on page 65 any two successive iterations, i and i+1,
will write and read the same variable sum. Therefore, in order for these two iterations to execute
in parallel some form of locking on the variable would be required. Otherwise it is not safe to
allow the two iterations to execute in parallel.

However, the use of locks imposes overhead that might slowdown the program. The C compiler
will not ordinarily parallelize the loop in “3.4 Data Dependence and Interference” on page 65. In
“3.4 Data Dependence and Interference” on page 65 there is a data dependence between two
iterations of the loop. Consider another example:

EXAMPLE 3–2 A Loop Without Dependence

for (i=1; i < 1000; i++) {

a[i] = 2 * a[i]; /* S1 */

}

In this case each iteration of the loop references a different array element. Therefore different
iterations of the loop can be executed in any order. They may be executed in parallel without
any locks because no two data elements of different iterations can possibly interfere.

The analysis performed by the compiler to determine if two different iterations of a loop could
reference the same variable is called data dependence analysis. Data dependences prevent loop
parallelization if one of the references writes to the variable. The dependence analysis
performed by the compiler can have three outcomes:

■ There is a dependence. In this case, it is not safe to execute the loop in parallel. “3.4 Data
Dependence and Interference” on page 65 illustrates this case.

■ There is no dependence. The loop may safely execute in parallel using an arbitrary number
of processors. “3.4 Data Dependence and Interference” on page 65 illustrates this case.

■ The dependence cannot be determined. The compiler assumes, for safety, that there might
be a dependence that prevents parallel execution of the loop and will not parallelize the loop.

3.4 Data Dependence and Interference

Chapter 3 • Parallelizing Sun C Code 65

In “3.4 Data Dependence and Interference” on page 65, whether or not two iterations of the
loop write to the same element of array a depends on whether or not array b contains duplicate
elements. Unless the compiler can determine this fact, it assumes there is a dependence and
does not parallelize the loop.

EXAMPLE 3–3 A Loop That May or May Not Contain Dependencies

for (i=1; i < 1000; i++) {

a[b[i]] = 2 * a[i];

}

3.4.1 Parallel Execution Model
The parallel execution of loops is performed by Solaris threads. The thread starting the initial
execution of the program is called the master thread. At program start-up the master thread
creates multiple slave threads as shown in the following figure. At the end of the program all the
slave threads are terminated. Slave thread creation is performed exactly once to minimize the
overhead.

After start-up, the master thread starts the execution of the program while slave threads wait
idly. When the master thread encounters a parallel loop, different iterations of the loop are
distributed among the slave and master threads which start the execution of the loop. After each
thread finishes execution of its chunk it synchronizes with the remaining threads. This
synchronization point is called a barrier. The master thread cannot continue executing the
remainder of the program until all the threads have finished their work and reached the barrier.
The slave threads go into a wait state after the barrier waiting for more parallel work, and the
master thread continues to execute the program.

FIGURE 3–1 Master and Slave Threads

3.4 Data Dependence and Interference

Sun Studio 12: C User's Guide •66

During this process, various overheads can occur:

■ The overhead of synchronization and work distribution
■ The overhead of barrier synchronization

In general, there may be some parallel loops for which the amount of useful work performed is
not enough to justify the overhead. For such loops, there may be appreciable slowdown. In the
following figure, a loop is parallelized. However the barriers, represented by horizontal bars,
introduce significant overhead. The work between the barriers is performed serially or in
parallel as indicated. The amount of time required to execute the loop in parallel is considerably
less than the amount of time required to synchronize the master and slave threads at the
barriers.

3.4.2 Private Scalars and Private Arrays
There are some data dependences for which the compiler may still be able to parallelize a loop.
Consider the following example.

EXAMPLE 3–4 A Parallelizable Loop With Dependence

for (i=1; i < 1000; i++) {

t = 2 * a[i]; /* S1 */

b[i] = t; /* S2 */

}

FIGURE 3–2 Parallel Execution of a Loop

3.4 Data Dependence and Interference

Chapter 3 • Parallelizing Sun C Code 67

In this example, assuming that arrays a and b are non-overlapping arrays, there appears to be a
data dependence in any two iterations due to the variable t. The following statements execute
during iterations one and two.

EXAMPLE 3–5 Iterations One and Two

t = 2*a[1]; /* 1 */

b[1] = t; /* 2 */

t = 2*a[2]; /* 3 */

b[2] = t; /* 4 */

Because statements one and three modify the variable t, the compiler cannot execute them in
parallel. However, the value of t is always computed and used in the same iteration so the
compiler can use a separate copy of t for each iteration. This eliminates the interference
between different iterations due to such variables. In effect, we have made variable t as a private
variable for each thread executing that iteration. This can be illustrated as follows:

EXAMPLE 3–6 Variable t as a Private Variable for Each Thread

for (i=1; i < 1000; i++) {

pt[i] = 2 * a[i]; /* S1 */

b[i] = pt[i]; /* S2 */

}

“3.4.2 Private Scalars and Private Arrays” on page 67 is essentially the same example as “3.4
Data Dependence and Interference” on page 65, but each scalar variable reference t is now
replaced by an array reference pt. Each iteration now uses a different element of pt, and this
results in eliminating any data dependencies between any two iterations. Of course one
problem with this illustration is that it may lead to an extra large array. In practice, the compiler
only allocates one copy of the variable for each thread that participates in the execution of the
loop. Each such variable is, in effect, private to the thread.

The compiler can also privatize array variables to create opportunities for parallel execution of
loops. Consider the following example:

EXAMPLE 3–7 A Parallelizable Loop With an Array Variable

for (i=1; i < 1000; i++) {

for (j=1; j < 1000; j++) {

x[j] = 2 * a[i]; /* S1 */

b[i][j] = x[j]; /* S2 */

}

}

3.4 Data Dependence and Interference

Sun Studio 12: C User's Guide •68

In “3.4.2 Private Scalars and Private Arrays” on page 67, different iterations of the outer loop
modify the same elements of array x, and thus the outer loop cannot be parallelized. However, if
each thread executing the outer loop iterations has a private copy of the entire array x, then
there would be no interference between any two iterations of the outer loop. This is illustrated
as follows:

EXAMPLE 3–8 A Parallelizable Loop Using a Privatized Array

for (i=1; i < 1000; i++) {

for (j=1; j < 1000; j++) {

px[i][j] = 2 * a[i]; /* S1 */

b[i][j] = px[i][j]; /* S2 */

}

}

As in the case of private scalars, it is not necessary to expand the array for all the iterations, but
only up to the number of threads executing in the systems. This is done automatically by the
compiler by allocating one copy of the original array in the private space of each thread.

3.4.3 Storeback
Privatization of variables can be very useful for improving the parallelism in the program.
However, if the private variable is referenced outside the loop then the compiler needs to assure
that it has the right value. Consider the following example:

EXAMPLE 3–9 A Parallelized Loop Using Storeback

for (i=1; i < 1000; i++) {

t = 2 * a[i]; /* S1 */

b[i] = t; /* S2 */

}

x = t; /* S3 */

In “3.4.3 Storeback” on page 69 the value of t referenced in statement S3 is the final value of t
computed by the loop. After the variable t has been privatized and the loop has finished
executing, the right value of t needs to be stored back into the original variable. This is called
storeback. This is done by copying the value of t on the final iteration back to the original
location of variable t. In many cases the compiler can do this automatically. But there are
situations where the last value cannot be computed so easily:

EXAMPLE 3–10 A Loop That Cannot Use Storeback

for (i=1; i < 1000; i++) {

if (c[i] > x[i]) { /* C1 */

t = 2 * a[i]; /* S1 */

3.4 Data Dependence and Interference

Chapter 3 • Parallelizing Sun C Code 69

EXAMPLE 3–10 A Loop That Cannot Use Storeback (Continued)

b[i] = t; /* S2 */

}

}

x = t*t; /* S3 */

For correct execution, the value of t in statement S3 is not, in general, the value of t on the final
iteration of the loop. It is in fact the last iteration for which the condition C1 is true. Computing
the final value of t is quite hard in the general cases. In cases like this the compiler will not
parallelize the loop.

3.4.4 Reduction Variables
There are cases when there is a real dependence between iterations of a loop and the variables
causing the dependence cannot simply be privatized. This can arise, for example, when values
are being accumulated from one iteration to the next.

EXAMPLE 3–11 A Loop That May or May Not Be Parallelized

for (i=1; i < 1000; i++) {

sum += a[i]*b[i]; /* S1 */

}

In “3.4.4 Reduction Variables” on page 70, the loop computes the vector product of two arrays
into a common variable called sum. This loop cannot be parallelized in a simple manner. The
compiler can take advantage of the associative nature of the computation in statement S1 and
allocate a private variable called psum[i] for each thread. Each copy of the variable psum[i] is
initialized to 0. Each thread computes its own partial sum in its own copy of the variable
psum[i]. Before crossing the barrier, all the partial sums are added onto the original variable
sum. In this example, the variable sum is called a reduction variable because it computes a
sum-reduction. However, one danger of promoting scalar variables to reduction variables is
that the manner in which rounded values are accumulated can change the final value of sum.
The compiler performs this transformation only if you specifically give permission for it to do
so.

3.4 Data Dependence and Interference

Sun Studio 12: C User's Guide •70

3.5 Speedups
If the compiler does not parallelized a portion of a program where a significant amount of time
is spent, then no speedup occurs. This is basically a consequence of Amdahls Law. For example,
if a loop that accounts for five percent of the execution time of a program is parallelized, then
the overall speedup is limited to five percent. However, there may not be any improvement
depending on the size of the workload and parallel execution overheads.

As a general rule, the larger the fraction of program execution that is parallelized, the greater the
likelihood of a speedup.

Each parallel loop incurs a small overhead during start-up and shutdown. The start overhead
includes the cost of work distribution, and the shutdown overhead includes the cost of the
barrier synchronization. If the total amount of work performed by the loop is not big enough
then no speedup will occur. In fact the loop might even slow down. So if a large amount of
program execution is accounted by a large number of short parallel loops, then the whole
program may slow down instead of speeding up.

The compiler performs several loop transformations that try to increase the granularity of the
loops. Some of these transformations are loop interchange and loop fusion. So in general, if the
amount of parallelism in a program is small or is fragmented among small parallel regions, then
the speedup is less.

Often scaling up a problem size improves the fraction of parallelism in a program. For example,
consider a problem that consists of two parts: a quadratic part that is sequential, and a cubic part
that is parallelizable. For this problem the parallel part of the workload grows faster than the
sequential part. So at some point the problem will speedup nicely, unless it runs into resource
limitations.

It is beneficial to try some tuning, experimentation with directives, problem sizes and program
restructuring in order to achieve benefits from parallel C.

3.5.1 Amdahl’s Law
Fixed problem-size speedup is generally governed by Amdahl’s law. Amdahl’s Law simply says
that the amount of parallel speedup in a given problem is limited by the sequential portion of
the problem.The following equation describes the speedup of a problem where F is the fraction
of time spent in sequential region, and the remaining fraction of the time is spent uniformly
among P processors. If the second term of the equation drops to zero, the total speedup is
bounded by the first term, which remains fixed.

3.5 Speedups

Chapter 3 • Parallelizing Sun C Code 71

The following figure illustrates this concept diagrammatically. The darkly shaded portion
represents the sequential part of the program, and remains constant for one, two, four, and
eight processors, while the lightly shaded portion represents the parallel portion of the program
that can be divided uniformly among an arbitrary number of processors.

As the number of processors increases, the amount of time required for the parallel portion of
each program decreases whereas the serial portion of each program stays the same.

In reality, however, you may incur overheads due to communication and distribution of work
to multiple processors. These overheads may or may not be fixed for arbitrary number of
processors used.

The following figure illustrates the ideal speedups for a program containing 0%, 2%, 5%, and
10% sequential portions. Here, no overhead is assumed.

FIGURE 3–3 Fixed Problem Speedups

3.5 Speedups

Sun Studio 12: C User's Guide •72

A graph that shows the ideal speedups for a program containing 0%, 2%, 5%, and 10%
sequential portions, assuming no overhead. The x-axis measures the number of processors and
the y-axis measures the speedup.

3.5.1.1 Overheads
Once the overheads are incorporated in the model the speedup curves change dramatically. Just
for the purposes of illustration we assume that overheads consist of two parts: a fixed part which
is independent of the number of processors, and a non-fixed part that grows quadratically with
the number of the processors used:

The fraction one over S equals one divided by the quantity of F plus the quantity one minus the
fraction F over P end of quantity plus K sub one plus K sub two times P squared end quantity.

In this equation, K1 and K2 are some fixed factors. Under these assumptions the speedup curve
is shown in the following figure. It is interesting to note that in this case the speedups peak out.
After a certain point adding more processors is detrimental to performance as shown in the
following figure.

FIGURE 3–4 Amdahl's Law Speedup Curve

3.5 Speedups

Chapter 3 • Parallelizing Sun C Code 73

The graph shows that all programs reach the greatest speedup at five processors and then loose
this benefit as up to eight processors are added. The x-axis measures the number of processors
and the y-axis measures the speedup.

3.5.1.2 Gustafson’s Law
Amdahls Law can be misleading for predicting parallel speedups in real problems. The fraction
of time spent in sequential sections of the program sometimes depends on the problem size.
That is, by scaling the problem size, you may improve the chances of speedup. The following
example demonstrates this.

EXAMPLE 3–12 Scaling the Problem Size May Improve Chances of Speedup

/*

* initialize the arrays

*/

for (i=0; i < n; i++) {

for (j=0; j < n; j++) {

a[i][j] = 0.0;

b[i][j] = ...

c[i][j] = ...

}

}

/*

* matrix multiply

*/

for (i=0; i < n; i++) {

FIGURE 3–5 Speedup Curve With Overheads

3.5 Speedups

Sun Studio 12: C User's Guide •74

EXAMPLE 3–12 Scaling the Problem Size May Improve Chances of Speedup (Continued)

for(j=0; j < n; j++) {

for (k=0; k < n; k++) {

a[i][j] = b[i][k]*c[k][j];

}

}

}

Assume an ideal overhead of zero and assume that only the second loop nest is executed in
parallel. It is easy to see that for small problem sizes (i.e. small values of n), the sequential and
parallel parts of the program are not so far from each other. However, as n grows larger, the time
spent in the parallel part of the program grows faster than the time spent in the sequential part.
For this problem, it is beneficial to increase the number of processors as the problem size
increases.

3.6 Load Balance and Loop Scheduling
Loop scheduling is the process of distributing iterations of a parallel loop to multiple threads. In
order to maximize the speedup, it is important that the work be distributed evenly among the
threads while not imposing too much overhead. The compiler offers several types of scheduling
for different situations.

3.6.1 Static or Chunk Scheduling
It is beneficial to divide the work evenly among the different threads on the system when the
work performed by different iterations of a loop is the same. This approach is known as static
scheduling.

EXAMPLE 3–13 A Good Loop for Static Scheduling

for (i=1; i < 1000; i++) {

sum += a[i]*b[i]; /* S1 */

}

Under static or chunk scheduling, each thread will get the same number of iterations. If there
were 4 threads, then in the above example, each thread will get 250 iterations. Provided there are
no interruptions and each thread progresses at the same rate, all the threads will complete at the
same time.

3.6 Load Balance and Loop Scheduling

Chapter 3 • Parallelizing Sun C Code 75

3.6.2 Self Scheduling
Static scheduling will not achieve good load balance, in general, when the work performed by
each iteration varies. In static scheduling, each thread grabs the same chunk of iterations. Each
thread, except the master thread, upon completion of its chunk waits to participate in the next
parallel loop execution. The master thread continues execution of the program. In self
scheduling, each thread grabs a different small chunk of iteration and after completion of its
assigned chunk, tries to acquire more chunks from the same loop.

3.6.3 Guided Self Scheduling
In guided self scheduling (GSS), each thread gets successively smaller number of chunks. In
cases where the size of each iteration varies, GSS can help balance the load.

3.7 Loop Transformations
The compiler performs several loop restructuring transformations to help improve the
parallelization of a loop in programs. Some of these transformations can also improve the single
processor execution of loops as well. The transformations performed by the compiler are
described below.

3.7.1 Loop Distribution
Often loops contain a few statements that cannot be executed in parallel and many statements
that can be executed in parallel. Loop Distribution attempts to remove the sequential
statements into a separate loop and gather the parallelizable statements into a different loop.
This is illustrated in the following example:

EXAMPLE 3–14 A Candidate for Loop Distribution

for (i=0; i < n; i++) {

x[i] = y[i] + z[i]*w[i]; /* S1 */

a[i+1] = (a[i-1] + a[i] + a[i+1]/3.0; /* S2 */

y[i] = z[i] - x[i]; /* S3 */

}

Assuming that arrays x, y, w, a, and z do not overlap, statements S1 and S3 can be parallelized
but statement S2 cannot be. Here is how the loop looks after it is split or distributed into two
different loops:

3.7 Loop Transformations

Sun Studio 12: C User's Guide •76

EXAMPLE 3–15 The Distributed Loop

/* L1: parallel loop */

for (i=0; i < n; i++) {

x[i] = y[i] + z[i]*w[i]; /* S1 */

y[i] = z[i] - x[i]; /* S3 */

}

/* L2: sequential loop */

for (i=0; i < n; i++) {

a[i+1] = (a[i-1] + a[i] + a[i+1]/3.0; /* S2 */

}

After this transformation, loop L1 does not contain any statements that prevent the
parallelization of the loop and may be executed in parallel. Loop L2, however, still has a
non-parallelizable statement from the original loop.

Loop distribution is not always profitable or safe to perform. The compiler performs analysis to
determine the safety and profitability of distribution.

3.7.2 Loop Fusion
If the granularity of a loop, or the work performed by a loop, is small, the performance gain
from distribution may be insignificant. This is because the overhead of parallel loop start-up is
too high compared to the loop workload. In such situations, the compiler uses loop fusion to
combine several loops into a single parallel loop, and thus increase the granularity of the loop.
Loop fusion is easy and safe when loops with identical trip counts are adjacent to each other.
Consider the following example:

EXAMPLE 3–16 Loops With Small Work Loads

/* L1: short parallel loop */

for (i=0; i < 100; i++) {

a[i] = a[i] + b[i]; /* S1 */

}

/* L2: another short parallel loop */

for (i=0; i < 100; i++) {

b[i] = a[i] * d[i]; /* S2 */

}

The two short parallel loops are next to each other, and can be safely combined as follows:

EXAMPLE 3–17 The Two Loops Fused

/* L3: a larger parallel loop */

for (i=0; i < 100; i++) {

a[i] = a[i] + b[i]; /* S1 */

3.7 Loop Transformations

Chapter 3 • Parallelizing Sun C Code 77

EXAMPLE 3–17 The Two Loops Fused (Continued)

b[i] = a[i] * d[i]; /* S2 */

}

The new loop generates half the parallel loop execution overhead. Loop fusion can also help in
other ways. For example if the same data is referenced in two loops, then combining them can
improve the locality of reference.

However, loop fusion is not always safe to perform. If loop fusion creates a data dependence
that did not exist before then the fusion may result in incorrect execution. Consider the
following example:

EXAMPLE 3–18 Unsafe Fusion Candidates

/* L1: short parallel loop */

for (i=0; i < 100; i++) {

a[i] = a[i] + b[i]; /* S1 */

}

/* L2: a short loop with data dependence */

for (i=0; i < 100; i++) {

a[i+1] = a[i] * d[i]; /* S2 */

}

If the loops in “3.7.2 Loop Fusion” on page 77 are fused, a data dependence is created from
statement S2 to S1. In effect, the value of a[i] in the right hand side of statement S1 is computed
in statement S2. If the loops are not fused, this would not happen. The compiler performs safety
and profitability analysis to determine if loop fusion should be done. Often, the compiler can
fuse an arbitrary number of loops. Increasing the granularity in this manner can sometimes
push a loop far enough up for it to be profitable for parallelization.

3.7.3 Loop Interchange
It is generally more profitable to parallelize the outermost loop in a nest of loops, since the
overheads incurred are small. However, it is not always safe to parallelize the outermost loops
due to dependences that might be carried by such loops. This is illustrated in the following:

EXAMPLE 3–19 Nested Loop That Cannot Be Parallelized

for (i=0; i <n; i++) {

for (j=0; j <n; j++) {

a[j][i+1] = 2.0*a[j][i-1];

}

}

3.7 Loop Transformations

Sun Studio 12: C User's Guide •78

In this example, the loop with the index variable i cannot be parallelized, because of a
dependency between two successive iterations of the loop. The two loops can be interchanged
and the parallel loop (the j-loop) becomes the outer loop:

EXAMPLE 3–20 The Loops Interchanged

for (j=0; j<n; j++) {

for (i=0; i<n; i++) {

a[j][i+1] = 2.0*a[j][i-1];

}

}

The resulting loop incurs an overhead of parallel work distribution only once, while previously,
the overhead was incurred n times. The compiler performs safety and profitability analysis to
determine whether to perform loop interchange.

3.8 Aliasing and Parallelization
ISO C aliasing can often prevent loops from getting parallelized. Aliasing occurs when there are
two possible references to the same memory location. Consider the following example:

EXAMPLE 3–21 A Loop With Two References to the Same Memory Location

void copy(float a[], float b[], int n) {

int i;

for (i=0; i < n; i++) {

a[i] = b[i]; /* S1 */

}

}

Since variables a and b are parameters, it is possible that a and b may be pointing to overlapping
regions of memory; e.g, if copy were called as follows:

copy (x[10], x[11], 20);

In the called routine, two successive iterations of the copy loop may be reading and writing the
same element of the array x. However, if the routine copy were called as follows then there is no
possibility of overlap in any of the 20 iterations of the loop:

copy (x[10], x[40], 20);

In general, it is not possible for the compiler to analyze this situation correctly without knowing
how the routine is called. The compiler provides a keyword extension to ISO C that lets you
convey this kind of aliasing information. See “3.8.2 Restricted Pointers” on page 80 for more
information.

3.8 Aliasing and Parallelization

Chapter 3 • Parallelizing Sun C Code 79

3.8.1 Array and Pointer References
Part of the aliasing problem is that the C language can define array referencing and definition
through pointer arithmetic. In order for the compiler to effectively parallelize loops, either
automatically or explicitly with pragmas, all data that is laid out as an array must be referenced
using C array reference syntax and not pointers. If pointer syntax is used, the compiler cannot
determine the relationship of the data between different iterations of a loop. Thus it will be
conservative and not parallelize the loop.

3.8.2 Restricted Pointers
In order for a compiler to effectively perform parallel execution of a loop, it needs to determine
if certain lvalues designate distinct regions of storage. Aliases are lvalues whose regions of
storage are not distinct. Determining if two pointers to objects are aliases is a difficult and time
consuming process because it could require analysis of the entire program. Consider function
vsq() below:

EXAMPLE 3–22 A Loop With Two Pointers

void vsq(int n, double * a, double * b) {

int i;

for (i=0; i<n; i++) {

b[i] = a[i] * a[i];

}

}

The compiler can parallelize the execution of the different iterations of the loops if it knows that
pointers a and b access different objects. If there is an overlap in objects accessed through
pointers a and b then it would be unsafe for the compiler to execute the loops in parallel. At
compile time, the compiler does not know if the objects accessed by a and b overlap by simply
analyzing the function vsq(); the compiler may need to analyze the whole program to get this
information.

Restricted pointers are used to specify pointers which designate distinct objects so that the
compiler can perform pointer alias analysis. The following is an example of function vsq() in
which function parameters are declared as restricted pointers:

void vsq(int n, double * restrict a, double * restrict b)

Pointers a and b are declared as restricted pointers, so the compiler knows that a and b point to
distinct regions of storage. With this alias information, the compiler is able to parallelize the
loop.

3.8 Aliasing and Parallelization

Sun Studio 12: C User's Guide •80

The keyword restrict is a type-qualifier, like volatile, and it shall only qualify pointer types.
restrict is recognized as a keyword when you use -xc99=all (except with -Xs). There are
situations in which you may not want to change the source code. You can specify that
pointer-valued function-parameters be treated as restricted pointers by using the following
command line option:

-xrestrict=[func1,...,funcn]

If a function list is specified, then pointer parameters in the specified functions are treated as
restricted; otherwise, all pointer parameters in the entire C file are treated as restricted. For
example, -xrestrict=vsq, qualifies the pointers a and b given in the first example of the
function vsq() with the keyword restrict.

It is critical that you use restrict correctly. If pointers qualified as restricted pointers point to
objects which are not distinct, the compiler can incorrectly parallelize loops resulting in
undefined behavior. For example, assume that pointers a and b of function vsq() point to
objects which overlap, such that b[i] and a[i+1] are the same object. If a and b are not declared
as restricted pointers the loops will be executed serially. If a and b are incorrectly qualified as
restricted pointers the compiler may parallelize the execution of the loops, which is not safe,
because b[i+1] should only be computed after b[i] is computed.

3.8.3 Explicit Parallelization and Pragmas
Often, there is not enough information available for the compiler to make a decision on the
legality or profitability of parallelization. The compiler supports pragmas that allow the
programmer to effectively parallelize loops that otherwise would be too difficult or impossible
for the compiler to handle. The Sun-Specific MP pragmas detailed in the rest of this section
have been deprecated in favor of the OpenMP standard. See the OpenMP API User’s Guide for
information to the directives of the standard.

3.8.3.1 Serial Pragmas

Note – The Sun-specific MP pragmas have been deprecated and are no longer supported.
However, the compiler supports the APIs specified by the OpenMP 2.5 standard instead. See the
OpenMP API User’s Guide for migration information to the directives of the standard.

There are two serial pragmas, and both apply to for loops:
■ #pragma MP serial_loop

■ #pragma MP serial_loop_nested

The #pragma MP serial_loop pragma indicates to the compiler that the next for loop is not to
be automatically parallelized.

3.8 Aliasing and Parallelization

Chapter 3 • Parallelizing Sun C Code 81

The #pragma MP serial_loop_nested pragma indicates to the compiler that the next for loop
and any for loops nested within the scope of this for loop are not to be automatically
parallelized.

The scope of these pragmas begins with the pragma and ends with the beginning of the next
block, the next for loop within the current block, or the end of the current block, which ever
occurs first.

3.8.3.2 Parallel Pragma

Note – The Sun-specific MP pragmas have been deprecated and are no longer supported.
However, the compiler supports the APIs specified by the OpenMP 2.5 standard instead. See the
OpenMP API User’s Guide for migration information to the directives of the standard.

There is one parallel pragma: #pragma MP taskloop [options].

The MP taskloop pragma can, optionally, take one or more of the following arguments.

■ maxcpus (number_of_processors)
■ private (list_of_private_variables)
■ shared (list_of_shared_variables)
■ readonly (list_of_readonly_variables)
■ storeback (list_of_storeback_variables)
■ savelast

■ reduction (list_of_reduction_variables)
■ schedtype (scheduling_type)

The scope of these pragmas begins with the pragma and ends with which ever of the following
occurs first: the beginning of the next block, the next for loop within the current block, the end
of the current block. The pragma applies to the next for loop prior to the end of the pragmas
scope.

Only one option can be specified per MP taskloop pragma; however, the pragmas are
cumulative and apply to the next for loop within the pragmas scope:

#pragma MP taskloop maxcpus(4)

#pragma MP taskloop shared(a,b)

#pragma MP taskloop storeback(x)

These options may appear multiple times prior to the for loop to which they apply. In case of
conflicting options, the compiler will issue a warning message.

Nesting of for Loops
An MP taskloop pragma applies to the next for loop within the current block. There is no
nesting of parallelized for loops by parallelized C.

3.8 Aliasing and Parallelization

Sun Studio 12: C User's Guide •82

Eligibility for Parallelizing

An MP taskloop pragma suggests to the compiler that, unless otherwise disallowed, the
specified for loop should be parallelized.

Any for loop with irregular control flow and unknown loop iteration increment is ineligible for
parallelization. For example, for loops containing setjmp, longjmp, exit, abort, return, goto,
labels, and break should not be considered as candidates for parallelization.

Of particular importance is to note that for loops with inter-iteration dependencies can be
eligible for explicit parallelization. This means that if an MP taskloop pragma is specified for
such a loop the compiler will simply honor it, unless the for loop is disqualified. It is the user’s
responsibility to make sure that such explicit parallelization will not lead to incorrect results.

If both the serial_loop or serial_loop_nested and taskloop pragmas are specified for a for
loop, the last one specified will prevail.

Consider the following example:

#pragma MP serial_loop_nested

for (i=0; i<100; i++) {

pragma MP taskloop

for (j=0; j<1000; j++) {

...

}

}

The i loop will not be parallelized but the j loop might be.

Number of Processors

#pragma MP taskloop maxcpus (number_of_processors) specifies the number of processors to
be used for this loop, if possible.

The value of maxcpus must be a positive integer. If maxcpus equals 1, then the specified loop will
be executed in serial. (Note that setting maxcpus to be 1 is equivalent to specifying the
serial_loop pragma.) The smaller of the values of maxcpus or the interpreted value of the
PARALLEL environment variable will be used. When the environment variable PARALLEL is not
specified, it is interpreted as having the value 1.

If more than one maxcpus pragma is specified for a for loop, the last one specified will prevail.

Classifying Variables

A variable used in a loop is classified as being either a private, shared, reduction, or readonly
variable. The variable belongs to only one of these classifications. A variable can only be
classified as a reduction or readonly variable through an explicit pragma. See #pragma MP

3.8 Aliasing and Parallelization

Chapter 3 • Parallelizing Sun C Code 83

taskloop reduction and #pragma MP taskloop readonly. A variable can be classified as
being either a private or shared variable through an explicit pragma or through the following
default scoping rules.

Default Scoping Rules for private and sharedVariables

A private variable is one whose value is private to each processor processing some iterations of
a for loop. In other words, the value assigned to a private variable in one iteration of a for
loop is not propagated to other processors processing other iterations of that for loop. A
shared variable, on the other hand, is a variable whose current value is accessible by all
processors processing iterations of a for loop. The value assigned to a shared variable by one
processor working on iterations of a loop may be seen by other processors working on other
iterations of the loop. Loops being explicitly parallelized through use of #pragma MP taskloop
directives, that contain references to shared variables, must ensure that such sharing of values
does not cause any correctness problems (such as race conditions). No synchronization is
provided by the compiler on updates and accesses to shared variables in an explicitly
parallelized loop.

In analyzing explicitly parallelized loops, the compiler uses the following “default scoping rules”
to determine whether a variable is private or shared:

■ If a variable is not explicitly classified via a pragma, the variable will default to being
classified as a shared variable if it is declared as a pointer or array, and is only referenced
using array syntax within the loop. Otherwise, it will be classified as a private variable.

■ The loop index variable is always treated as a private variable and is always a storeback
variable.

It is highly recommended that all variables used in an explicitly parallelized for loop be explicitly
classified as one of shared, private, reduction, or readonly, to avoid the “default scoping
rules.”

Since the compiler does not perform any synchronization on accesses to shared variables,
extreme care must be exercised before using an MP taskloop pragma for a loop that contains,
for example, array references. If inter-iteration data dependencies exist in such an explicitly
parallelized loop, then its parallel execution may give erroneous results. The compiler may or
may not be able to detect such a potential problem situation and issue a warning message. In
any case, the compiler will not disable the explicit parallelization of loops with potential shared
variable problems.

privateVariables

#pragma MP taskloop private (list_of_private_variables)

Use this pragma to specify all the variables that should be treated as private variables for this
loop. All other variables used in the loop that are not explicitly specified as shared, readonly, or
reduction variables, are either shared or private as defined by the default scoping rules.

3.8 Aliasing and Parallelization

Sun Studio 12: C User's Guide •84

A private variable is one whose value is private to each processor processing some iterations of
a loop. In other words, the value assigned to a private variable by one of the processors
working on iterations of a loop is not propagated to other processors processing other iterations
of that loop. A private variable has no initial value at the start of each iteration of a loop and
must be set to a value within the iteration of a loop prior to its first use within that iteration.
Execution of a program with a loop containing an explicitly declared private variable whose
value is used prior to being set will result in undefined behavior.

sharedVariables

#pragma MP taskloop shared (list_of_shared_variables)

Use this pragma to specify all the variables that should be treated as shared variables for this
loop. All other variables used in the loop that are not explicitly specified as private, readonly,
storeback or reduction variables, are either shared or private as defined by the default
scoping rules.

A shared variable is a variable whose current value is accessible by all processors processing
iterations of a for loop. The value assigned to a shared variable by one processor working on
iterations of a loop may be seen by other processors working on other iterations of the loop.

readonlyVariables

#pragma MP taskloop readonly (list_of_readonly_variables)

readonly variables are a special class of shared variables that are not modified in any iteration of
a loop. Use this pragma to indicate to the compiler that it may use a separate copy of that
variable’s value for each processor processing iterations of the loop.

storebackVariables

#pragma MP taskloop storeback (list_of_storeback_variables)

Use this pragma to specify all the variables to be treated as storeback variables.

A storeback variable is one whose value is computed in a loop, and this computed value is then
used after the termination of the loop. The last loop iteration values of storeback variables are
available for use after the termination of the loop. Such a variable is a good candidate to be
declared explicitly via this directive as a storeback variable when the variable is a private
variable, whether by explicitly declaring the variable private or by the default scoping rules.

Note that the storeback operation for a storeback variable occurs at the last iteration of the
explicitly parallelized loop, regardless of whether or not that iteration updates the value of the
storeback variable. In other words, the processor that processes the last iteration of a loop may
not be the same processor that currently contains the last updated value for a storeback
variable. Consider the following example:

3.8 Aliasing and Parallelization

Chapter 3 • Parallelizing Sun C Code 85

#pragma MP taskloop private(x)
#pragma MP taskloop storeback(x)

for (i=1; i <= n; i++) {

if (...) {

x=...

}

}

printf (“%d”, x);

In the previous example the value of the storeback variable x printed out via the printf() call
may not be the same as that printed out by a serial version of the i loop, because in the explicitly
parallelized case, the processor that processes the last iteration of the loop (when i==n), which
performs the storeback operation for x may not be the same processor that currently contains
the last updated value for x. The compiler will attempt to issue a warning message to alert the
user of such potential problems.

In an explicitly parallelized loop, variables referenced as arrays are not treated as storeback
variables. Hence it is important to include them in the list_of_storeback_variables if such
storeback operation is desired (for example, if the variables referenced as arrays have been
declared as private variables).

savelast

#pragma MP taskloop savelast

Use this pragma to specify all the private variables of a loop that you want to be treated as
storeback variables. The syntax of this pragma is as follows:

#pragma MP taskloop savelast

It is often convenient to use this form, rather than list out each private variable of a loop when
declaring each variable as storeback variables.

reductionVariables

#pragma MP taskloop reduction (list_of_reduction_variables) specifies that all the variables
appearing in the reduction list will be treated as reduction variables for the loop. A reduction

variable is one whose partial values can be individually computed by each of the processors
processing iterations of the loop, and whose final value can be computed from all its partial
values. The presence of a list of reduction variables can facilitate the compiler in identifying
that the loop is a reduction loop, allowing generation of parallel reduction code for it. Consider
the following example:

#pragma MP taskloop reduction(x)
for (i=0; i<n; i++) {

x = x + a[i];

}

3.8 Aliasing and Parallelization

Sun Studio 12: C User's Guide •86

the variable x is a (sum) reduction variable and the i loop is a(sum) reduction loop.

Scheduling Control

The Sun ISO C compiler supports several pragmas that can be used in conjunction with the
taskloop pragma to control the loop scheduling strategy for a given loop. The syntax for this
pragma is:

#pragma MP taskloop schedtype (scheduling_type)

This pragma can be used to specify the specific scheduling_type to be used to schedule the
parallelized loop. Scheduling_type can be one of the following:

■ static

In static scheduling all the iterations of the loop are uniformly distributed among all the
participating processors. Consider the following example:

#pragma MP taskloop maxcpus(4)

#pragma MP taskloop schedtype(static)

for (i=0; i<1000; i++) {

...

}

In the above example, each of the four processors will process 250 iterations of the loop.

■ self [(chunk_size)]
In self scheduling, each participating processor processes a fixed number of iterations
(called the “chunk size”) until all the iterations of the loop have been processed. The
optional chunk_size parameter specifies the “chunk size” to be used. Chunk_size must be a
positive integer constant, or variable of integral type. If specified as a variable, chunk_size
must evaluate to a positive integer value at the beginning of the loop. If this optional
parameter is not specified or its value is not positive, the compiler will select the chunk size
to be used. Consider the following example:

#pragma MP taskloop maxcpus(4)

#pragma MP taskloop schedtype(self(120))

for (i=0; i<1000; i++) {

...

}

In the above example, the number of iterations of the loop assigned to each participating
processor, in order of work request, are:

120, 120, 120, 120, 120, 120, 120, 120, 40.

■ gss [(min_chunk_size)]

3.8 Aliasing and Parallelization

Chapter 3 • Parallelizing Sun C Code 87

In guided self scheduling, each participating processor processes a variable number of
iterations (called the “min chunk size”) until all the iterations of the loop have been
processed. The optional min_chunk_size parameter specifies that each variable chunk size
used must be at least min_chunk_size in size. Min_chunk_size must be a positive integer
constant, or variable of integral type. If specified as a variable, min_chunk_size must evaluate
to a positive integer value at the beginning of the loop. If this optional parameter is not
specified or its value is not positive, the compiler will select the chunk size to be used.
Consider the following example:

#pragma MP taskloop maxcpus(4)

#pragma MP taskloop schedtype(gss(10))

for (i=0; i<1000; i++) {

...

}

In the above example, the number of iterations of the loop assigned to each participating
processor, in order of work request, are:

250, 188, 141, 106, 79, 59, 45, 33, 25, 19, 14, 11, 10, 10, 10.

■ factoring [(min_chunk_size)]
In factoring scheduling, each participating processor processes a variable number of
iterations (called the “min chunk size”) until all the iterations of the loop have been
processed. The optional min_chunk_size parameter specifies that each variable chunk size
used must be at least min_chunk_size in size. Min_chunk_size must be a positive integer
constant, or variable of integral type. If specified as a variable min_chunk_size must evaluate
to a positive integer value at the beginning of the loop. If this optional parameter is not
specified or its value is not positive, the compiler will select the chunk size to be used.
Consider the following example:

#pragma MP taskloop maxcpus(4)

#pragma MP taskloop schedtype(factoring(10))

for (i=0; i<1000; i++) {

...

}

In the above example, the number of iterations of the loop assigned to each participating
processor, in order of work request, are:

125, 125, 125, 125, 62, 62, 62, 62, 32, 32, 32, 32, 16, 16, 16, 16, 10, 10, 10, 10, 10, 10

3.8 Aliasing and Parallelization

Sun Studio 12: C User's Guide •88

lint Source Code Checker

This chapter explains how you can use the lint program to check your C code for errors that
may cause a compilation failure or unexpected results at runtime. In many cases, lint warns
you about incorrect, error-prone, or nonstandard code that the compiler does not necessarily
flag.

The lint program issues every error and warning message produced by the C compiler. It also
issues warnings about potential bugs and portability problems. Many messages issued by lint
can assist you in improving your program’s effectiveness, including reducing its size and
required memory.

The lint program uses the same locale as the compiler and the output from lint is directed to
stderr. See “4.6.3 lint Filters” on page 118 for more information on and examples of how to
use lint to check code before you perform type-based alias-disambiguation.

4.1 Basic and Enhanced lintModes
The lint program operates in two modes:

■ Basic, which is the default
■ Enhanced, which includes everything done by basic lint, as well as additional, detailed

analysis of code

In both basic and enhanced modes, lint compensates for separate and independent
compilation in C by flagging inconsistencies in definition and use across files, including any
libraries you have used. In a large project environment especially, where the same function may
be used by different programmers in hundreds of separate modules of code, lint can help
discover bugs that otherwise might be difficult to find. A function called with one less argument
than expected, for example, looks at the stack for a value the call has never pushed, with results
correct in one condition, incorrect in another, depending on whatever happens to be in

4C H A P T E R 4

89

memory at that stack location. By identifying dependencies like this one and dependencies on
machine architecture as well, lint can improve the reliability of code run on your machine or
someone else’s.

In enhanced mode, lint provides more detailed reporting than in basic mode. In basic mode,
lint’s capabilities include:
■ Structure and flow analysis of the source program
■ Constant propagations and constant expression evaluations
■ Analysis of control flow and data flow
■ Analysis of data types usage

In enhanced mode, lint can detect these problems:
■ Unused #include directives, variables, and procedures
■ Memory usage after its deallocation
■ Unused assignments
■ Usage of a variable value before its initialization
■ Deallocation of nonallocated memory
■ Usage of pointers when writing in constant data segments
■ Nonequivalent macro redefinitions
■ Unreached code
■ Conformity of the usage of value types in unions
■ Implicit casts of actual arguments.

4.2 Using lint

Invoke the lint program and its options from the command line. To invoke lint in the basic
mode, use the following command:

% lint file1.c file2.c

Enhanced lint is invoked with the -Nlevel or -Ncheck option. For example, you can invoke
enhanced lint as follows:

% lint -Nlevel=3 file1.c file2.c

lint examines code in two passes. In the first pass, lint checks for error conditions within C
source files; in the second pass, it checks for inconsistencies across C source files. This process is
invisible to the user unless lint is invoked with -c:

% lint -c file1.c file2.c

That command directs lint to execute the first pass only and collect information relevant to the
second—about inconsistencies in definition and use across file1.c and file2.c—in intermediate
files named file1.ln and file2.ln:

4.2 Using lint

Sun Studio 12: C User's Guide •90

% ls

file1.c
file1.ln
file2.c
file2.ln

This way, the -c option to lint is analogous to the -c option to cc, which suppresses the link
editing phase of compilation. Generally speaking, lint’s command-line syntax closely follows
cc’s.

When the .ln files are linted:

% lint file1.ln file2.ln

the second pass is executed. lint processes any number of .c or .ln files in their command-line
order. Thus,

% lint file1.ln file2.ln file3.c

directs lint to check file3.c for errors internal to it and all three files for consistency.

lint searches directories for included header files in the same order as cc. You can use the -I
option to lint as you would the -I option to cc. See “2.14 How to Specify Include Files” on
page 56.

You can specify multiple options to lint on the same command line. Options can be
concatenated unless one of the options takes an argument or if the option has more than one
letter:

% lint -cp -Idir1 -Idir2 file1.c file2.c

That command directs lint to:

■ Execute the first pass only
■ Perform additional portability checks
■ Search the specified directories for included header files

lint has many options you can use to direct lint to perform certain tasks and report on certain
conditions.

4.2 Using lint

Chapter 4 • lint Source Code Checker 91

4.3 The lintOptions
The lint program is a static analyzer. It cannot evaluate the runtime consequences of the
dependencies it detects. Certain programs, for instance, may contain hundreds of unreachable
break statements that are of little importance, but which lint flags nevertheless. This is one
example where the lint command-line options and directives—special comments embedded
in the source text—come in:

■ You can invoke lint with the -b option to suppress all the error messages about
unreachable break statements.

■ You can precede any unreachable statement with the comment /*NOTREACHED*/ to suppress
the diagnostic for that statement.

The lint options are listed below alphabetically. Several lint options relate to suppressing
lint diagnostic messages. These options are also listed in Table 4–8, following the alphabetized
options, along with the specific messages they suppress. The options for invoking enhanced
lint begin with -N.

lint recognizes many cc command-line options, including -A, -D, -E, -g, -H, -O, -P, -U, -Xa,
-Xc, -Xs, -Xt, and -Y, although -g and -O are ignored. Unrecognized options are warned about
and ignored.

4.3.1 -#

Turns on verbose mode, showing each component as it is invoked.

4.3.2 -###

Shows each component as it is invoked, but does not actually execute it.

4.3.3 -a

Suppresses certain messages. Refer to Table 4–8.

4.3.4 -b

Suppresses certain messages. Refer to Table 4–8.

4.3.5 -Cfilename
Creates a .ln file with the file name specified. These .ln files are the product of lint’s first pass
only. filename can be a complete path name.

4.3 The lintOptions

Sun Studio 12: C User's Guide •92

4.3.6 -c

Creates a .ln file consisting of information relevant to lint’s second pass for every .c file
named on the command line. The second pass is not executed.

4.3.7 -dirout=dir
Specifies the directory dir where the lint output files (.ln files) will be placed. This option
affects the -c option.

4.3.8 -err=warn

-err=warn is a macro for -errwarn=%all. See “4.3.15 -errwarn=t” on page 97.

4.3.9 -errchk=l(, l)
Perform additional checking as specified by l. The default is -errchk=%none. Specifying
-errchk is equivalent to specifying -errchk=%all. l is a comma-separated list of checks that
consists of one or more of the following. For example, -errchk=longptr64,structarg.

TABLE 4–1 The -errchkFlags

Value Meaning

%all Perform all of -errchk’s checks.

%none Perform none of -errchk’s checks. This is the default.

[no%]locfmtchk Check for printf-like format strings during the first pass of lint. Regardless of
whether or not you use -errchk=locfmtchk, lint always checks for printf-like
format strings in its second pass.

[no%]longptr64 Check portability to environment for which the size of long integers and pointers
is 64 bits and the size of plain integers is 32 bits. Check assignments of pointer
expressions and long integer expressions to plain integers, even when explicit cast
is used.

[no%]structarg Check structural arguments passed by value and report the cases when formal
parameter type is not known.

[no%]parentheses Check the clarity of precedence within your code. Use this option to enhance the
maintainability of code. If -errchk=parentheses returns a warning, consider
using additional parentheses to clearly signify the precedence of operations
within the code.

4.3 The lintOptions

Chapter 4 • lint Source Code Checker 93

TABLE 4–1 The -errchk Flags (Continued)
Value Meaning

[no%]signext Check for situations in which the normal ISO C value-preserving rules allow the
extension of the sign of a signed-integral value in an expression of
unsigned-integral type. This option only produces error messages when you
specify -errchk=longptr64 as well.

[no%]sizematch Check for the assignment of a larger integer to a smaller integer and issue a
warning. These warnings are also issued for assignment between same size
integers that have different signs (unsigned int gets a signed int).

4.3.10 -errfmt=f
Specifies the format of lint output. f can be one of the following: macro, simple, src, or tab.

TABLE 4–2 The -errfmtFlags

Value Meaning

macro Displays the source code, the line number, and the place of the error, with macro
unfolding

simple Displays the line number and the place number, in brackets, of the error, for one-line
(simple) diagnostic messages. Similar to the -s option, but includes error-position
information

src Displays the source code, the line number, and the place of the error (no macro
unfolding)

tab Displays in tabular format. This is the default.

The default is -errfmt=tab. Specifying -errfmt is equivalent to specifying -errfmt=tab.

If more than one format is specified, the last format specified is used, and lint warns about the
unused formats.

4.3.11 -errhdr=h
Enables lint to report certain messages for header files when you also specify -Ncheck. h is a
comma-separated list that consists of one or more of the following: dir, no%dir, %all, %none,
%user.

4.3 The lintOptions

Sun Studio 12: C User's Guide •94

TABLE 4–3 The -errhdrFlags

Value Meaning

dir Report the -Ncheck messages for header files included from the directory dir

no%dir Does not report the -Ncheck messages for header files included from the directory dir

%all Checks all used header files

%none Does not check header files. This is the default.

%user Checks all used user header files, that is, all header files except those in /usr/include

and its subdirectories, as well as those supplied by the compiler

The default is -errhdr=%none. Specifying -errhdr is equivalent to specifying -errhdr=%user.

Examples:

% lint -errhdr=inc1 -errhdr=../inc2

checks used header files in directories inc1 and ../inc2.

% lint -errhdr=%all,no%../inc

checks all used header files except those in the directory ../inc.

4.3.12 -erroff=tag(, tag)
Suppresses or enables lint error messages.

t is a comma-separated list that consists of one or more of the following: tag, no%tag, %all,
%none.

TABLE 4–4 The -erroffFlags

Value Meaning

tag Suppresses the message specified by this tag. You can display the tag for a message by
using the -errtags=yes option.

no%tag Enables the message specified by this tag

%all Suppresses all messages

%none Enables all messages. This is the default.

The default is -erroff=%none. Specifying -erroff is equivalent to specifying -erroff=%all.

Examples:

4.3 The lintOptions

Chapter 4 • lint Source Code Checker 95

% lint -erroff=%all,no%E_ENUM_NEVER_DEF,no%E_STATIC_UNUSED

prints only the messages “enum never defined” and “static unused”, and suppresses other
messages.

% lint -erroff=E_ENUM_NEVER_DEF,E_STATIC_UNUSED

suppresses only the messages “enum never defined” and “static unused”.

4.3.13 -errsecurity=v
Use the -errsecurity option to check your code for security loopholes.

v must be one of the following:

TABLE 4–5 The -errsecurityFlags

Value Meaning

core This level checks for source code constructs that are almost always either unsafe or
difficult to verify. Checks at this level include:
■ Use of variable format strings with the printf() and scanf() family of

functions

■ Use of unbounded string (%s) formats in scanf() functions

■ Use of functions with no safe usage: gets(), cftime(), ascftime(), creat()

■ Incorrect use of open() with O_CREAT

Consider source code that produces warnings at this level to be a bug. The
source code in question should be changed. In all cases, straightforward safer
alternatives are available.

standard This level includes all checks from the core level plus constructs that may be safe,
but have better alternatives available. This level is recommended when checking
newly-written code. Additional checks at this level include:
■ Use of string copy functions other than strlcpy()

■ Use of weak random number functions

■ Use of unsafe functions to generate temporary files

■ Use of fopen() to create files

■ Use of functions that invoke the shell
Replace source code that produces warnings at this level with new or
significantly modified code. Balance addressing these warnings in legacy code
against the risks of destabilizing the application.

4.3 The lintOptions

Sun Studio 12: C User's Guide •96

TABLE 4–5 The -errsecurity Flags (Continued)
Value Meaning

extended This level contains the most complete set of checks, including everything from the
Core and Standard levels. In addition, a number of warnings are generated about
constructs that may be unsafe in some situations. The checks at this level are useful
as an aid in reviewing code, but need not be used as a standard with which
acceptable source code must comply. Additional checks at this level include:
■ Calls to getc() or fgetc() inside a loop

■ Use of functions prone to pathname race conditions

■ Use of the exec() family of functions

■ Race conditions between stat() and other functions
Review source code which produces warnings at this level to determine if the
potential security issue is present.

%none Turns off -errsecurity checks

If you do not specify a setting for -errsecurity, the lint sets it to -errsecurity=%none. If you
do specify -errsecurity but not an argument, the lint sets it to -errsecurity=standard.

4.3.14 -errtags=a
Displays the message tag for each error message. a can be either yes or no. The default is
-errtags=no. Specifying -errtags is equivalent to specifying -errtags=yes.

Works with all -errfmt options.

4.3.15 -errwarn=t
If the indicated warning message is issued, lint exits with a failure status. t is a
comma-separated list that consists of one or more of the following: tag, no%tag, %all, %none.
Order is important; for example %all,no%tag causes lint to exit with a fatal status if any
warning except tag is issued. The following table list the -errwarn values:

TABLE 4–6 The -errwarnFlags

tag Cause lint to exit with a fatal status if the message specified by this tag is issued as a warning
message. Has no effect if tag is not issued.

4.3 The lintOptions

Chapter 4 • lint Source Code Checker 97

TABLE 4–6 The -errwarn Flags (Continued)
no%tag Prevent lint from exiting with a fatal status if the message specified by tag is issued only as a

warning message. Has no effect if tag is not issued. Use this option to revert a warning message
that was previously specified by this option with tag or %all from causing lint to exit with a
fatal status when issued as a warning message.

%all Cause lint to exit with a fatal status if any warning messages are issued. %all can be followed
by no%tag to exempt specific warning messages from this behavior.

%none Prevents any warning message from causing lint to exit with a fatal status should any warning
message be issued.

The default is -errwarn=%none. If you specify -errwarn alone, it is equivalent to
-errwarn=%all.

4.3.16 -F

Prints the path names as supplied on the command line rather than only their base names when
referring to the .c files named on the command line.

4.3.17 -fd

Reports about old-style function definitions or declarations.

4.3.18 -flagsrc=file
Executes lint with options contained in the file file. Multiple options can be specified in file,
one per line.

4.3.19 -h

Suppresses certain messages. Refer to Table 4–8.

4.3.20 -Idir
Searches the directory dir for included header files.

4.3 The lintOptions

Sun Studio 12: C User's Guide •98

4.3.21 -k

Alter the behavior of /* LINTED [message] */ directives or NOTE(LINTED(message)) annotations.
Normally, lint suppresses warning messages for the code following these directives. Instead of
suppressing the messages, lint prints an additional message containing the comment inside
the directive or annotation.

4.3.22 -Ldir
Searches for a lint library in the directory dir when used with -l.

4.3.23 -lx
Accesses the lint library llib-lx.ln.

4.3.24 -m

Suppresses certain messages. Refer to Table 4–8.

4.3.25 -m32|-m64
Specifies the memory model for the program being analyzed. Also searches for lint libraries that
correspond to the selected memory model (32-bit/64-bit).

Use -m32 to verify 32-bit C programs and -m64 to verify 64-bit C programs.

The ILP32 memory model (32-bit int, long, pointer data types) is the default on all Solaris
platforms and on Linux platforms that are not 64-bit enabled. The LP64 memory model (64-bit
long, pointer data types) is the default on Linux platforms that are 64-bit enabled. -m64 is
permitted only on platforms that are enabled for the LP64 model.

Note that in previous compiler releases, the memory model, ILP32 or LP64, was implied by the
choice of the -Xarch option. Starting with the Sun Studio 12 compilers, this is no longer the
case. On most platforms, just adding -m64 to the command line is sufficient for linting 64-bit
programs.

See the sections following this list of lint options for more information on the predefined
macros.

4.3 The lintOptions

Chapter 4 • lint Source Code Checker 99

4.3.26 -Ncheck=c
Checks header files for corresponding declarations; checks macros. c is a comma-separated list
of checks that consists of one or more of the following: macro, extern, %all, %none, no%macro,
no%extern.

TABLE 4–7 The -NcheckFlags

Value Meaning

macro Checks for consistency of macro definitions across files

extern Checks for one-to-one correspondence of declarations between source files and their
associated header files (for example, for file1.c and file1.h). Ensure that there are
neither extraneous nor missing extern declarations in a header file.

%all Performs all of -Ncheck’s checks

%none Performs none of -Ncheck’s checks. This is the default.

no%macro Performs none of -Ncheck’s macro checks

no%extern Performs none of -Ncheck’s extern checks

The default is -Ncheck=%none. Specifying -Ncheck is equivalent to specifying -Ncheck=%all.

Values may be combined with a comma, for example, -Ncheck=extern,macro.

Example:

% lint -Ncheck=%all,no%macro

performs all checks except macro checks.

4.3.27 -Nlevel=n
Turns on enhanced lint mode by specifying the level of enhanced lint analysis for reporting
problems. This option allows you to control the amount of detected errors. The higher the level,
the longer the verification time. n is a number: 1, 2, 3, or 4. There is no default. If you do not
specify -Nlevel, lint uses its basic analysis mode. If you specify -Nlevel without an argument,
lint sets -Nlevel=4.

See “4.2 Using lint” on page 90 for an explanation of basic and enhanced lint modes.

4.3.27.1 -Nlevel=1

Analyzes single procedures. Reports unconditional errors that occur on some program
execution paths. Does not do global data and control flow analysis.

4.3 The lintOptions

Sun Studio 12: C User's Guide •100

4.3.27.2 -Nlevel=2

Analyzes the whole program, including global data and control flow. Reports unconditional
errors that occur on some program execution paths.

4.3.27.3 -Nlevel=3

Analyzes the whole program, including constant propagation, cases when constants are used as
actual arguments, as well as the analysis performed under -Nlevel=2.

Verification of a C program at this analysis level takes two to four times longer then at the
preceding level. The extra time is required because lint assumes partial interpretation of the
program by creating sets of possible values for program variables. These sets of variables are
created on the basis of constants and conditional statements that contain constant operands
available in the program. The sets form the basis for creating other sets (a form of constant
propagation). Sets received as the result of the analysis are evaluated for correctness according
to the following algorithm:

If a correct value exists among all possible values of an object, then that correct value is used as
the basis for further propagation; otherwise an error is diagnosed.

4.3.27.4 -Nlevel=4

Analyzes the whole program, and reports conditional errors that could occur when certain
program execution paths are used, as well as the analysis performed under -Nlevel=3.

At this analysis level, there are additional diagnostic messages. The analysis algorithm generally
corresponds to the analysis algorithm of -Nlevel=3 with the exception that any invalid values
now generate an error message. The amount of time required for analysis at this level can
increase as much as two orders (about 20 to 100 time more slowly). In this case the extra time
required is directly proportional to the program complexity as characterized by recursion,
conditional statements etc. As a result of this, it may be difficult to use this level of analysis for a
program that exceeds 100,000 lines.

4.3.28 -n

Suppresses checks for compatibility with the default lint standard C library.

4.3.29 -ox
Causes lint to create a lint library with the name llib-lx.ln. This library is created from all
the .ln files that lint used in its second pass. The -c option nullifies any use of the -o option.
To produce a llib-lx.ln without extraneous messages, you can use the-x option. The -v
option is useful if the source file(s) for the lint library are just external interfaces. The lint
library produced can be used later if lint is invoked with -lx.

4.3 The lintOptions

Chapter 4 • lint Source Code Checker 101

By default, you create libraries in lint’s basic format. If you use lint’s enhanced mode, the
library created will be in enhanced format, and can only be used in enhanced mode.

4.3.30 -p

Enables certain messages relating to portability issues.

4.3.31 -Rfile
Write a .ln file to file, for use by cxref(1). This option disables the enhanced mode, if it is
switched on.

4.3.32 -s

Produce simple diagnostics with "warning:" or "error:" prefixes. By default lint buffers some
messages to produce compound output.

4.3.33 -u

Suppresses certain messages. Refer to Table 4–8. This option is suitable for running lint on a
subset of files of a larger program.

4.3.34 -V

Writes the product name and releases to standard error.

4.3.35 -v

Suppresses certain messages. Refer to Table 4–8.

4.3.36 -Wfile
Write a .ln file to file, for use by cflow(1). This option disables the enhanced mode, if it is
switched on.

4.3 The lintOptions

Sun Studio 12: C User's Guide •102

4.3.37 -XCC=a
Accepts C++-style comments. In particular, // can be used to indicate the start of a comment. a
can be either yes or no. The default is -XCC=no. Specifying -XCC is equivalent to specifying
-XCC=yes.

Note – You only need to use this option if you use -xc99=none. Under -xc99=all (the default),
lint accepts comments which are indicated by //.

4.3.38 -Xalias_level[=l]
where l is one of any, basic, weak, layout, strict, std, or strong. See Table B–11 for a detailed
explanation of the different levels of disambiguation.

If you do not specify -Xalias_level, the default of the flag is -Xalias_level=any. This means
that there is no type-based alias-analysis. If you specify -Xalias_level but do not supply a
level, the default is -Xalias_level=layout.

Be sure to run lint at a level of disambiguation that is no more strict than the level at which you
ran the compiler. If you run lint at a level of disambiguation that is more strict than the level at
which you compiled, the results will be difficult to interpret and possibly misleading.

See “4.6.3 lint Filters” on page 118 for a detailed explanation of disambiguation as well as a list
of pragmas designed to help with disambiguation.

4.3.39 -Xarch=amd64

(Solaris Operating System) Deprecated. Do not use. See “4.3.25 -m32|-m64” on page 99

4.3.40 -Xarch=v9

(Solaris Operating System) Deprecated. Do not use. See “4.3.25 -m32|-m64” on page 99

4.3.41 -Xc99[=o]
The -Xc99 flag controls compiler recognition of the implemented features from the C99
standard (ISO/IEC 9899:1999, Programming Language -C).

o can be one of the following: all, none.

-Xc99=none turns off recognition of C99 features. -Xc99=all turns on recognition of supported
C99 features.

4.3 The lintOptions

Chapter 4 • lint Source Code Checker 103

Specifying -Xc99 without any arguments is the same as -Xc99=all.

Note – Though the compiler support-level defaults to the features of C99 listed in Table C–6 , the
standard headers provided by Solaris software in /usr/include do not yet conform with the
1999 ISO/IEC C standard. If you encounter error messages, try using -Xc99=none to obtain the
1990 ISO/IEC C standard behavior for these headers.

4.3.42 -Xexplicitpar=a
(SPARC) Directs lint to recognize #pragma MP directives. a can be either yes or no. The default
is -Xexplicitpar=no. Specifying -Xexplicitpar is equivalent to specifying
-Xexplicitpar=yes.

4.3.43 -Xkeeptmp=a
Keeps temporary files created during linting instead of deleting them automatically. a can be
either yes or no. The default is -Xkeeptmp=no. Specifying -Xkeeptmp is equivalent to specifying
-Xkeeptmp=yes.

4.3.44 -Xtemp=dir
Sets the directory for temporary files to dir. Without this option, temporary files go into /tmp.

4.3.45 -Xtime=a
Reports the execution time for each lint pass. a can be either yes or no. The default is
-Xtime=no. Specifying -Xtime is equivalent to specifying -Xtime=yes.

4.3.46 -Xtransition=a
Issues warnings for the differences between K&R C and Sun ISO C. a can be either yes or no.
The default is -Xtransition=no. Specifying -Xtransition is equivalent to specifying
-Xtransition=yes.

4.3.47 -Xustr={ascii_utf16_ushort|no}
This option enables recognition of string literals of the form U"ASCII_string" as an array of
unsigned short int. The default is -Xustr=no which disables compiler recognition of
U"ASCII_string string literals. "-Xustr=ascii_utf16_ushort enables compiler recognition of
U"ASCII_string" string literals.

4.3 The lintOptions

Sun Studio 12: C User's Guide •104

4.3.48 -x

Suppresses certain messages. Refer to Table 4–8.

4.3.49 -y

Treats every .c file named on the command line as if it begins with the directive /*
LINTLIBRARY */ or the annotation NOTE(LINTLIBRARY). A lint library is normally created
using the /* LINTLIBRARY */ directive or the NOTE(LINTLIBRARY) annotation.

4.4 lintMessages
Most of lint’s messages are simple, one-line statements printed for each occurrence of the
problem they diagnose. Errors detected in included files are reported multiple times by the
compiler, but only once by lint, no matter how many times the file is included in other source
files. Compound messages are issued for inconsistencies across files and, in a few cases, for
problems within them as well. A single message describes every occurrence of the problem in
the file or files being checked. When use of a lint filter (see “4.6.2 lint Libraries” on page 116)
requires that a message be printed for each occurrence, compound diagnostics can be converted
to the simple type by invoking lint with the -s option.

lint’s messages are written to stderr.

4.4.1 Options to Suppress Messages
You can use several lint options to suppress lint diagnostic messages. Messages can be
suppressed with the -erroff option, followed by one or more tags. These mnemonic tags can
be displayed with the -errtags=yes option.

The following table lists the options that suppress lint messages.

TABLE 4–8 lintOptions to Suppress Messages

Option Messages Suppressed

-a assignment causes implicit narrowing conversion

conversion to larger integral type may sign-extend incorrectly

-b statement not reached (unreachable break and empty statements)

4.4 lintMessages

Chapter 4 • lint Source Code Checker 105

TABLE 4–8 lintOptions to Suppress Messages (Continued)
Option Messages Suppressed

-h assignment operator "=" found where equality operator "==" was expected

constant operand to op: "!"

fallthrough on case statements

pointer cast may result in improper alignment

precedence confusion possible; parenthesize

statement has no consequent: if

statement has no consequent: else

-m declared global, could be static

-erroff=tag One or more lint messages specified by tag

-u name defined but never used

name used but not defined

-v arguments unused in function

-x name declared but never used or defined

4.4.2 lintMessage Formats
The lint program can, with certain options, show precise source file lines with pointers to the
line position where the error occurred. The option enabling this feature is -errfmt=f. Under
this option, lint provides the following information:

■ Source line(s) and position(s)
■ Macro unfolding
■ Error-prone stack(s)

For example, the following program, Test1.c, contains an error.

1 #include <string.h>

2 static void cpv(char *s, char* v, unsigned n)

3 { int i;

4 for (i=0; i<=n; i++){

5 *v++ = *s++;}

6 }

7 void main(int argc, char* argv[])

8 {

9 if (argc != 0){

10 cpv(argv[0], argc, strlen(argv[0]));}

11}

4.4 lintMessages

Sun Studio 12: C User's Guide •106

Using lint on Test1.c with the option:

% lint -errfmt=src -Nlevel=2 Test1.c

produces the following output:

|static void cpv(char *s, char* v, unsigned n)

| ^ line 2, Test1.c

|

| cpv(argv[0], argc, strlen(argv[0]));

| ^ line 10, Test1.c

warning: improper pointer/integer combination: arg #2

|

|static void cpv(char *s, char* v, unsigned n)

| ^ line 2, Test1.c

|

|cpv(argv[0], argc, strlen(argv[0]));

| ^ line 10, Test1.c

|

| *v++ = *s++;

| ^ line 5, Test1.c

warning:use of a pointer produced in a questionable way

v defined at Test1.c(2) ::Test1.c(5)

call stack:

main() , Test1.c(10)

cpv() , Test1.c(5)

The first warning indicates two source lines that are contradictory. The second warning shows
the call stack, with the control flow leading to the error.

Another program, Test2.c, contains a different error:

1 #define AA(b) AR[b+l]

2 #define B(c,d) c+AA(d)

3

4 int x=0;

5

6 int AR[10]={1,2,3,4,5,6,77,88,99,0};

7

8 main()

9 {

10 int y=-5, z=5;

11 return B(y,z);

12 }

Using lint on Test2.c with the option:

% lint -errfmt=macro Test2.c

4.4 lintMessages

Chapter 4 • lint Source Code Checker 107

produces the following output, showing the steps of macro substitution:

| return B(y,z);

| ^ line 11, Test2.c

|

|#define B(c,d) c+AA(d)

| ^ line 2, Test2.c

|

|#define AA(b) AR[b+l]

| ^ line 1, Test2.c

error: undefined symbol: l

|

| return B(y,z);

| ^ line 11, Test2.c

|

|#define B(c,d) c+AA(d)

| ^ line 2, Test2.c

|

|#define AA(b) AR[b+l]

| ^ line 1, Test2.c

variable may be used before set: l

lint: errors in Test2.c; no output created

lint: pass2 not run - errors in Test2.c

4.5 lintDirectives

4.5.1 Predefined Values
The following predefinitions are valid in all modes:

■ __BUILTIN_VA_ARG_INCR

■ __SUNPRO_C=0x590

■ __SVR4

■ __SunOS (Solaris)
■ __SunOS_OSN_N (Solaris)
■ __amd64 (x86 with -m64)
■ __gnu__linux (linux)
■ __i386 (x86)
■ __linux (linux)
■ __linux__ (linux)
■ __sparc (SPARC)
■ __sparcv9 (-Xarch=v9)
■ __sun (Solaris)
■ __unix

4.5 lintDirectives

Sun Studio 12: C User's Guide •108

■ __”uname -s”_”uname -r” (example: __SunOS_5_7)
■ linux (x86, linux)

These predefinitions are not valid in -Xc mode:

■ sun

■ unix

■ sparc (SPARC)
■ i386 (x86)
■ lint

4.5.2 Directives
lint directives in the form of /*...*/ are supported for existing annotations, but will not be
supported for future annotations. Directives in the form of source code annotations,
NOTE(...), are recommended for all annotations.

Specify lint directives in the form of source code annotations by including the file note.h, for
example:

#include <note.h>

Lint shares the Source Code Annotations scheme with several other tools. When you install the
Sun C compiler, you also automatically install the file /usr/lib/note/SUNW_SPRO-lint, which
contains the names of all the annotations that LockLint understands. However, the Sun C
source code checker, lint, also checks all the files in /usr/lib/note and
/opt/SUNWspro/prod/lib/note for all valid annotations.

You may specify a location other than /usr/lib/note by setting the environment variable
NOTEPATH, as in:

setenv NOTEPATH $NOTEPATH:other_location

The following table lists the lint directives along with their actions.

TABLE 4–9 The lintDirectives

Directive Action

NOTE(ALIGNMENT(fname,n)) where n=1,
2, 4, 8, 16, 32, 64, 128

Makes lint set the following function result alignment in n bytes.
For example, malloc() is defined as returning a char* or void*
when in fact it really returns pointers that are word, or even
doubleword, aligned.

Suppresses the following message:
■ improper alignment

4.5 lintDirectives

Chapter 4 • lint Source Code Checker 109

TABLE 4–9 The lintDirectives (Continued)
Directive Action

NOTE(ARGSUSED(n))

/*ARGSUSEDn*/

This directive acts like the -v option for the next function.

Suppresses the following message for every argument but the first
n in the function definition it precedes. Default is 0. For the NOTE
format, n must be specified.
■ argument unused in function

NOTE(ARGUNUSED

(par_name[,par_name...]))

Makes lint not check the mentioned arguments for usage (this
option acts only for the next function).

Suppresses the following message for every argument listed in
NOTE or directive.
■ argument unused in function

NOTE(CONSTCOND)

/*CONSTCOND*/

Suppresses complaints about constant operands for the
conditional expression. Suppresses the following messages for the
constructs it precedes. Also NOTE(CONSTANTCONDITION) or

/* CONSTANTCONDITION */.

constant in conditional context

constant operands to op: "!"

logical expression always false: op "&&"

logical expression always true: op "||"

NOTE(EMPTY) /*EMPTY*/ Suppresses complaints about a null statement consequent on an
if statement. This directive should be placed after the test
expression, and before the semicolon. This directive is supplied to
support empty if statements when a valid else statement follows.
It suppresses messages on an empty else consequent.

Suppresses the following messages when inserted between the
controlling expression of the if and semicolon.
■ statement has no consequent: else

when inserted between the else and semicolon;

■ statement has no consequent: if

NOTE(FALLTHRU)

/*FALLTHRU*/

Suppresses complaints about a fall through to a case or default
labelled statement. This directive should be placed immediately
preceding the label.

Suppresses the following message for the case statement it
precedes. Also NOTE(FALLTHROUGH) or /* FALLTHROUGH */.
■ fallthrough on case statement

4.5 lintDirectives

Sun Studio 12: C User's Guide •110

TABLE 4–9 The lintDirectives (Continued)
Directive Action

NOTE(LINTED (msg))

/*LINTED [msg]*/

Suppresses any intra-file warning except those dealing with
unused variables or functions. This directive should be placed on
the line immediately preceding where the lint warning occurred.
The -k option alters the way in which lint handles this directive.
Instead of suppressing messages, lint prints an additional
message, if any, contained in the comments. This directive is
useful in conjunction with the -s option for post-lint filtering.

When -k is not invoked, suppresses every warning pertaining to
an intra-file problem, except:
■ argument unused in function

■ declarations unused in block

■ set but not used in function

■ static unused

■ variable not used in function

for the line of code it precedes. msg is ignored.

NOTE(LINTLIBRARY)

/*LINTLIBRARY*/

When -o is invoked, writes to a library .ln file only definitions in
the .c file it heads. This directive suppresses complaints about
unused functions and function arguments in this file.

NOTE(NOTREACHED)

/*NOTREACHED*/

At appropriate points, stops comments about unreachable code.
This comment is typically placed just after calls to functions such
as exit(2).

Suppresses the following messages for the closing curly brace it
precedes at the end of the function.
■ statement not reached

for the unreached statements it precedes;

■ fallthrough on case statement

for the case it precedes that cannot be reached from the
preceding case;

■ function falls off bottom without returning value

4.5 lintDirectives

Chapter 4 • lint Source Code Checker 111

TABLE 4–9 The lintDirectives (Continued)
Directive Action

NOTE(PRINTFLIKE(n))

NOTE(PRINTFLIKE(fun_name,n))

/*PRINTFLIKEn*/

Treats the nth argument of the function definition it precedes as a
[fs]printf() format string and issues the following messages for
mismatches between the remaining arguments and the
conversion specifications. lint issues these warnings by default
for errors in the calls to [fs]printf() functions provided by the
standard C library.

For the NOTE format, n must be specified.
■ malformed format strings

for invalid conversion specifications in that argument, and
function argument type inconsistent with format;

■ too few arguments for format

■ too many arguments for format

NOTE(PROTOLIB(n))

/*PROTOLIBn*/

When n is 1 and NOTE(LINTLIBRARY) or /* LINTLIBRARY */ is
used, writes to a library .ln file only function prototype
declarations in the .c file it heads. The default is 0, which cancels
the process.

For the NOTE format, n must be specified.

NOTE(SCANFLIKE(n))

NOTE(SCANLIKE(fun_name,n))

/*SCANFLIKEn*/

Same as NOTE(PRINTFLIKE(n)) or /* PRINTFLIKEn */, except
that the nth argument of the function definition is treated as a
[fs]scanf() format string. By default, lint issues warnings for
errors in the calls to [fs]scanf() functions provided by the
standard C library.

For the NOTE format, n must be specified.

NOTE(VARARGS(n))

NOTE(VARARGS(fun_name,n))

/*VARARGSn*/

Suppresses the usual checking for variable numbers of arguments
in the following function declaration. The data types of the first n
arguments are checked; a missing n is taken to be 0. The use of the
ellipsis (...) terminator in the definition is suggested in new or
updated code.

For the function whose definition it precedes, suppresses the
following message for calls to the function with n or more
arguments. For the NOTE format, n must be specified.
■ functions called with variable number of arguments

4.5 lintDirectives

Sun Studio 12: C User's Guide •112

4.6 lintReference and Examples
This section provides reference information on lint, including checks performed by lint,
lint libraries, and lint filters.

4.6.1 Diagnostics Performed by lint
lint-specific diagnostics are issued for three broad categories of conditions: inconsistent use,
nonportable code, and questionable constructs. In this section, we review examples of lint’s
behavior in each of these areas, and suggest possible responses to the issues they raise.

4.6.1.1 Consistency Checks
Inconsistent use of variables, arguments, and functions is checked within files as well as across
them. Generally speaking, the same checks are performed for prototype uses, declarations, and
parameters as lint checks for old-style functions. If your program does not use function
prototypes, lint checks the number and types of parameters in each call to a function more
strictly than the compiler. lint also identifies mismatches of conversion specifications and
arguments in [fs]printf() and [fs]scanf() control strings.

Examples:
■ Within files, lint flags non-void functions that “fall off the bottom” without returning a

value to the invoking function. In the past, programmers often indicated that a function was
not meant to return a value by omitting the return type: fun() {}. That convention means
nothing to the compiler, which regards fun() as having the return type int. Declare the
function with the return type void to eliminate the problem.

■ Across files, lint detects cases where a non-void function does not return a value, yet is
used for its value in an expression—and the opposite problem, a function returning a value
that is sometimes or always ignored in subsequent calls. When the value is always ignored, it
may indicate an inefficiency in the function definition. When it is sometimes ignored, it’s
probably bad style (typically, not testing for error conditions). If you need not check the
return values of string functions like strcat(), strcpy(), and sprintf(), or output
functions like printf() and putchar(), cast the offending calls to void.

■ lint identifies variables or functions that are declared but not used or defined; used, but not
defined; or defined, but not used. When lint is applied to some, but not all files of a
collection to be loaded together, it produces error messages about functions and variables
that are:
■ Declared in those files, but defined or used elsewhere
■ Used in those files, but defined elsewhere
■ Defined in those files, but used elsewhere

Invoke the-x option to suppress the first complaint, -u to suppress the latter two.

4.6 lint Reference and Examples

Chapter 4 • lint Source Code Checker 113

4.6.1.2 Portability Checks
Some nonportable code is flagged by lint in its default behavior, and a few more cases are
diagnosed when lint is invoked with -p or -Xc. The latter causes lint to check for constructs
that do not conform to the ISO C standard. For the messages issued under -p and -Xc, see
“4.6.2 lint Libraries” on page 116.

Examples:

■ In some C language implementations, character variables that are not explicitly declared
signed or unsigned are treated as signed quantities with a range typically from -128 to 127.
In other implementations, they are treated as nonnegative quantities with a range typically
from 0 to 255. So the test:

char c;

c = getchar();

if (c == EOF) ...

where EOF has the value -1, always fails on machines where character variables take on
nonnegative values. lint invoked with -p checks all comparisons that imply a plain char may
have a negative value. However, declaring c as a signed char in the above example eliminates
the diagnostic, not the problem. That’s because getchar() must return all possible characters
and a distinct EOF value, so a char cannot store its value. We cite this example, perhaps the most
common one arising from implementation-defined sign-extension, to show how a thoughtful
application of lint’s portability option can help you discover bugs not related to portability. In
any case, declare c as an int.

■ A similar issue arises with bit-fields. When constant values are assigned to bit-fields, the
field may be too small to hold the value. On a machine that treats bit-fields of type int as
unsigned quantities, the values allowed for int x:3 range from 0 to 7, whereas on machines
that treat them as signed quantities, they range from -4 to 3. However, a three-bit field
declared type int cannot hold the value 4 on the latter machines. lint invoked with -p flags
all bit-field types other than unsigned int or signed int. These are the only portable
bit-field types. The compiler supports int, char, short, and long bit-field types that may be
unsigned, signed, or plain. It also supports the enum bit-field type.

■ Bugs can arise when a larger-sized type is assigned to a smaller-sized type. If significant bits
are truncated, accuracy is lost:

short s;

long l;

s = l;

lint flags all such assignments by default; the diagnostic can be suppressed by invoking the -a
option. Bear in mind that you may be suppressing other diagnostics when you invoke lint with
this or any other option. Check the list in “4.6.2 lint Libraries” on page 116 for the options that
suppress more than one diagnostic.

4.6 lint Reference and Examples

Sun Studio 12: C User's Guide •114

■ A cast of a pointer to one object type to a pointer to an object type with stricter alignment
requirements may not be portable. lint flags:

int *fun(y)

char *y;

{

return(int *)y;

}

because, on most machines, an int cannot start on an arbitrary byte boundary, whereas a char
can. You can suppress the diagnostic by invoking lint with -h, although, again, you may be
disabling other messages. Better still, eliminate the problem by using the generic pointer void
*.
■ ISO C leaves the order of evaluation of complicated expressions undefined. That is, when

function calls, nested assignment statements, or the increment and decrement operators
cause side effects when a variable is changed as a by-product of the evaluation of an
expression, the order in which the side effects take place is highly machine-dependent. By
default, lint flags any variable changed by a side effect and used elsewhere in the same
expression:

int a[10];

main()

{

int i = 1;

a[i++] = i;

}

In this example, the value of a[1] may be 1 if one compiler is used, 2 if another. The bitwise
logical operator & can give rise to this diagnostic when it is mistakenly used in place of the
logical operator &&:

if ((c = getchar()) != EOF & c != ’0’)

4.6.1.3 Questionable Constructs
lint flags a miscellany of legal constructs that may not represent what the programmer
intended. Examples:
■ An unsigned variable always has a nonnegative value. So the test:

unsigned x;

if (x < 0) ...

always fails. The test:

unsigned x;

if (x > 0) ...

4.6 lint Reference and Examples

Chapter 4 • lint Source Code Checker 115

is equivalent to:

if (x != 0) ...

This may not be the intended action. lint flags questionable comparisons of unsigned
variables with negative constants or 0. To compare an unsigned variable to the bit pattern of a
negative number, cast it to unsigned:

if (u == (unsigned) -1) ...

Or use the U suffix:

if (u == -1U) ...

■ lint flags expressions without side effects that are used in a context where side effects are
expected—that is, where the expression may not represent what the programmer intends. It
issues an additional warning whenever the equality operator is found where the assignment
operator is expected—that is, where a side effect is expected:

int fun()

{

int a, b, x, y;

(a = x) && (b == y);

}

■ lint cautions you to parenthesize expressions that mix both the logical and bitwise
operators (specifically, &, |, ^, <<, >>), where misunderstanding of operator precedence may
lead to incorrect results. Because the precedence of bitwise &, for example, falls below logical
==, the expression:

if (x & a == 0) ...

is evaluated as:

if (x & (a == 0)) ...

which is most likely not what you intended. Invoking lint with -h disables the diagnostic.

4.6.2 lint Libraries
You can use lint libraries to check your program for compatibility with the library functions
you have called in it—the declaration of the function return type, the number and types of
arguments the function expects, and so on. The standard lint libraries correspond to libraries
supplied by the C compilation system, and generally are stored in a standard place on your
system. By convention, lint libraries have names of the form llib-lx.ln.

4.6 lint Reference and Examples

Sun Studio 12: C User's Guide •116

The lint standard C library, llib-lc.ln, is appended to the lint command line by default;
checks for compatibility with it can be suppressed by invoking the -n option. Other lint
libraries are accessed as arguments to -l. That is:

% lint -lx file1.c file2.c

directs lint to check the usage of functions and variables in file1.c and file2.c for
compatibility with the lint library llib-lx.ln. The library file, which consists only of
definitions, is processed exactly as are ordinary source files and ordinary .ln files, except that
functions and variables used inconsistently in the library file, or defined in the library file but
not used in the source files, elicit no complaints.

To create your own lint library, insert the directive NOTE(LINTLIBRARY) at the head of a C
source file, then invoke lint for that file with the -o option and the library name given to -l:

% lint -ox file1.c file2.c

causes only definitions in the source files headed by NOTE(LINTLIBRARY) to be written to the file
llib-lx.ln. (Note the analogy of lint -o to cc -o.) A library can be created from a file of
function prototype declarations in the same way, except that both NOTE(LINTLIBRARY) and
NOTE(PROTOLIB(n))must be inserted at the head of the declarations file. If n is 1, prototype
declarations are written to a library .ln file just as are old-style definitions. If n is 0, the default,
the process is cancelled. Invoking lint with -y is another way of creating a lint library. The
command line:

% lint -y -ox file1.c file2.c

causes each source file named on that line to be treated as if it begins with NOTE(LINTLIBRARY),
and only its definitions to be written to llib-lx.ln.

By default, lint searches for lint libraries in the standard place. To direct lint to search for a
lint library in a directory other than the standard place, specify the path of the directory with
the -L option:

% lint -Ldir -lx file1.c file2.c

In enhanced mode, lint produces .ln files which store additional information than .ln files
produced in basic mode. In enhanced mode, lint can read and understand all .ln files
generated by either basic or enhanced lint modes. In basic mode, lint can read and
understand .ln files generated only using basic lint mode.

By default, lint uses libraries from the /usr/lib directory. These libraries are in the basic lint
format. You can run a makefile once, and create enhanced lint libraries in a new format,
which will enable enhanced lint to work more effectively. To run the makefile and create the
new libraries, enter the command:

% cd /opt/SUNWspro/prod/src/lintlib; make

4.6 lint Reference and Examples

Chapter 4 • lint Source Code Checker 117

where /opt/SUNWspro/prod is the installation directory. After the makefile is run, lint uses
the new libraries in enhanced mode, instead of the libraries in the /usr/lib directory.

The specified directory is searched before the standard place.

4.6.3 lint Filters
A lint filter is a project-specific post-processor that typically uses an awk script or similar
program to read the output of lint and discard messages that your project has deemed as not
identifying real problems—string functions, for instance, returning values that are sometimes
or always ignored. lint filters generate customized diagnostic reports when lint options and
directives do not provide sufficient control over output.

Two options to lint are particularly useful in developing a filter:

■ Invoking lint with -s causes compound diagnostics to be converted into simple, one-line
messages issued for each occurrence of the problem diagnosed. The easily parsed message
format is suitable for analysis by an awk script.

■ Invoking lint with -k causes certain comments you have written in the source file to be
printed in output, and can be useful both in documenting project decisions and specifying
the post-processor’s behavior. In the latter instance, if the comment identifies an expected
lint message, and the reported message is the same, the message can be filtered out. To use
-k, insert on the line preceding the code you wish to comment the
NOTE(LINTED(msg))directive, where msg refers to the comment to be printed when lint is
invoked with -k.
Refer to the list of directives in Table 4–9 for an explanation of what lint does when -k is
not invoked for a file containing NOTE(LINTED(msg)).

4.6 lint Reference and Examples

Sun Studio 12: C User's Guide •118

Type-Based Alias Analysis

This document explains how to use the -xalias_level option and several pragmas to enable
the compiler to perform type-based alias analysis and optimizations. You use these extensions
to express type-based information about the way pointers are used in your C program. The C
compiler uses this information, in turn, to do a significantly better job of alias disambiguation
for pointer-based memory references in your program.

See “B.2.67 -xalias_level[=l]” on page 241 for a detailed explanation of this command’s
syntax. Also, see “4.3.38 -Xalias_level[=l]” on page 103 for an explanation of the lint
program’s type-based alias-analysis capabilities.

5.1 Introduction to Type-Based Analysis
You can use the -xalias_level option to specify one of seven alias levels. Each level specifies a
certain set of properties about the way you use pointers in your C program.

As you compile with higher levels of the -xalias_level option, the compiler makes
increasingly extensive assumptions about the pointers in your code. You have greater
programming freedom when the compiler makes fewer assumptions. However, the
optimizations that result from these narrow assumptions may not result in significant runtime
performance improvement. If you code in accordance with the compiler assumptions of the
more advanced levels of the -xalias_level option, there is a greater chance that the resulting
optimizations will enhance runtime performance.

The -xalias_level option specifies which alias level applies to each translation unit. For cases
where more detail is beneficial, you can use new pragmas to override whatever alias levels are in
effect so that you can explicitly specify the aliasing relationships between individual types or
pointer variables in the translation unit. These pragmas are most useful when the pointer usage
in a translation unit is covered by one of the available alias levels, but a few specific pointer
variables are used in an irregular way that is not allowed by one of the available levels.

5C H A P T E R 5

119

5.2 Using Pragmas for Finer Control
For cases in which type-based analysis can benefit from more detail, you can use the following
pragmas to override the alias level in effect and specify the aliasing relationships between
individual types or pointer variables in the translation unit. These pragmas provide the most
benefit when the use of pointers in a translation unit is consistent with one of the available alias
levels, but a few specific pointer variables are used in an irregular way not allowed by one of the
available levels.

Note – You must declare the named type or variable prior to the pragma or a warning message is
issued and the pragma is ignored. The results of the program are undefined if the pragma
appears after the first memory reference to which its meaning applies.

The following terms are used in the pragma definitions.

Term Meaning

level Any of the alias levels listed under “B.2.67 -xalias_level[=l]” on page 241.

type Any of the following:
■ char, short, int, long, long long, float, double, long double
■ void, which denotes all pointer types
■ typedef name, which is the name of a defined type from a typedef declaration
■ struct name, which is the keyword struct followed by a struct tag name
■ union, which is the keyword union followed by a union tag name

pointer_name The name of any variable of pointer type in the translation unit.

5.2.1 #pragma alias_level level (list)
Replace level with one of the seven alias levels: any, basic, weak, layout, strict, std, or
strong. You can replace list with either a single type or a comma-delimited list of types, or you
can replace list with either a single pointer or a comma-delimited list of pointers. For example,
you can issue #pragma alias_level as follows:

■ #pragma alias_level level (type [, type])
■ #pragma alias_level level (pointer [, pointer])

This pragma specifies that the indicated alias level applies either to all of the memory references
of the translation unit for the listed types, or to all of the dereferences of the translation unit
where any of the named pointer variables are being dereferenced.

5.2 Using Pragmas for Finer Control

Sun Studio 12: C User's Guide •120

If you specify more than one alias level to be applied to a particular dereference, the level that is
applied by the pointer name, if any, has precedence over all other levels. The level applied by the
type name, if any, has precedence over the level applied by the option. In the following example,
the std level applies to p if the program is compiled with #pragma alias_level set higher than
any.

typedef int * int_ptr;

int_ptr p;

#pragma alias_level strong (int_ptr)

#pragma alias_level std (p)

5.2.1.1 #pragma alias (type, type [, type]…)
This pragma specifies that all the listed types alias each other. In the following example, the
compiler assumes that the indirect access *pt aliases the indirect access *pf.

#pragma alias (int, float)

int *pt;

float *pf;

5.2.1.2 #pragma alias (pointer, pointer [, pointer]…)
This pragma specifies that at the point of any dereference of any of the named pointer variables,
the pointer value being dereferenced can point to the same object as any of the other named
pointer variables. However, the pointer is not limited to only the objects contained in the
named variables and can point to objects that are not included in the list. This pragma overrides
the aliasing assumptions of any applied alias levels. In the following example, any indirect
accesses of p and q after the pragma are considered to alias regardless of their type.

#pragma alias(p, q)

5.2.1.3 #pragma may_point_to (pointer, variable [, variable]…)
This pragma specifies that at the point of any dereference of the named pointer variable, the
pointer value being dereferenced can point to the objects that are contained in any of the named
variables. However, the pointer is not limited to only the objects contained in the named
variables and can point to objects that are not included in the list. This pragma overrides the
aliasing assumptions of any applied alias levels. In the following example, the compiler assumes
that any indirect access of *p, aliases any direct accesses a, b, and c.

#pragma alias may_point_to(p, a, b, c)

5.2.1.4 #pragma noalias (type, type [, type]…)
This pragma specifies that the listed types do not alias each other. In the following example, the
compiler assumes that any indirect access of *p does not alias the indirect access *ps.

5.2 Using Pragmas for Finer Control

Chapter 5 • Type-Based Alias Analysis 121

struct S {

float f;

...} *ps;

#pragma noalias(int, struct S)

int *p;

5.2.1.5 #pragma noalias (pointer, pointer [, pointer]…)
This pragma specifies that at the point of any dereference of any of the named pointer variables,
the pointer value being dereferenced does not point to the same object as any of the other
named pointer variables. This pragma overrides all other applied alias levels. In the following
example, the compiler assumes that any indirect access of *p does not alias the indirect access *q
regardless of the types of the two pointers.

#pragma noalias(p, q)

5.2.1.6 #pragma may_not_point_to (pointer, variable [, variable]…)
This pragma specifies that at the point of any dereference of the named pointer variable, the
pointer value being dereferenced does not point to the objects that are contained in any of the
named variables. This pragma overrides all other applied alias levels. In the following example,
the compiler assumes that any indirect access of *p does not alias the direct accesses a, b, or c.

#pragma may_not_point_to(p, a, b, c)

5.3 Checking With lint

The lint program recognizes the same levels of type-based alias-disambiguation as the
compiler’s -xalias_level command. The lint program also recognizes the pragmas related to
type-based alias-disambiguation documented in this chapter. For a detailed explanation of the
lint -Xalias_level command, see “4.3.38 -Xalias_level[=l]” on page 103.

There are four situations that lint detects and for which it generates warnings:

■ Casting a scalar pointer to a struct pointer
■ Casting a void pointer to a struct pointer
■ Casting a structure field to a scalar pointer
■ Casting a struct pointer to a struct pointer at the level of -Xalias_level=strict without

explicit aliasing.

5.3 Checking With lint

Sun Studio 12: C User's Guide •122

5.3.1 Struct Pointer Cast of Scalar Pointer
In the following example, the pointer p of type integer is cast as a pointer of type struct foo.
With lint -Xalias_level=weak (or higher), this generates an error.

struct foo {

int a;

int b;

};

struct foo *f;

int *p;

void main()

{

f = (struct foo *)p; /* struct pointer cast of scalar pointer error */

}

5.3.2 Struct Pointer Cast of Void Pointer
In the following example, the void pointer vp, is cast as a struct pointer. With lint
-Xalias_level=weak (or higher), this generates a warning.

struct foo {

int a;

int b;

};

struct foo *f;

void *vp;

void main()

{

f = (struct foo *)vp; /* struct pointer cast of void pointer error */

}

5.3.3 Cast of Struct Field to Structure Pointer
In the following example, the address of structure member foo.b is being cast as a struct pointer
and then assigned to p. With lint -Xalias_level=weak (or higher), this generates a warning.

struct foo p{

int a;

int b;

5.3 Checking With lint

Chapter 5 • Type-Based Alias Analysis 123

};

struct foo *f1;

struct foo *f2;

void main()

{

f2 = (struct foo *)&f1->b; /* cast of a scalar pointer to struct pointer error*/

}

5.3.4 Explicit Aliasing Required
In the following example, the pointer f1 of type struct fooa is being cast as a pointer of type
struct foob. With lint -Xalias_level=strict (or higher) such a cast requires explicit aliasing,
unless the struct types are identical (the same number of fields of the same type). In addition, at
alias levels standard and strong, the assumptions is that the tags must match for aliasing to
occur. Use #pragma alias (struct fooa, struct foob) before the assignment to f1 and lint
stops generating the warning.

struct fooa {

int a;

};

struct foob {

int b;

};

struct fooa *f1;

struct foob *f2;

void main()

{

f1 = (struct fooa *)f2; /* explicit aliasing required warning */

}

5.4 Examples of Memory Reference Constraints
This section provides examples of code that are likely to appear in your source files. Each
example is followed by a discussion of the compiler’s assumptions about the code as dictated by
the applied level of type-based analysis.

Consider the following code. It can be compiled with different levels of aliasing to demonstrate
the aliasing relationship of the shown types.

5.4 Examples of Memory Reference Constraints

Sun Studio 12: C User's Guide •124

struct foo {

int f1;

short f2;

short f3;

int f4;

} *fp;

struct bar {

int b1;

int b2;

int b3;

} *bp;

int *ip;

short *sp;

If “5.4 Examples of Memory Reference Constraints” on page 124 is compiled with the
-xalias_level=any option, the compiler considers the following indirect accesses as aliases to
each other:

*ip, *sp, *fp, *bp, fp->f1, fp->f2, fp->f3, fp->f4, bp->b1, bp->b2, bp->b3

If “5.4 Examples of Memory Reference Constraints” on page 124 is compiled with the
-xalias_level=basic option, the compiler considers the following indirect accesses as aliases
to each other:

*ip, *bp, fp->f1, fp->f4, bp->b1, bp->b2, bp->b3

Additionally, *sp, fp->f2, and fp->f3 can alias each other, and *sp and *fp can alias each
other.

However, under -xalias_level=basic, the compiler assumes the following:

■ *ip does not alias *sp.
■ *ip does not alias fp->f2 and fp->f3.
■ *sp does not alias fp->f1, fp->f4, bp->b1, bp->b2, and bp->b3.

The compiler makes these assumptions because the access types of the two indirect accesses are
different basic types.

If “5.4 Examples of Memory Reference Constraints” on page 124 is compiled with the
-xalias_level=weak option, the compiler assumes the following alias information:

■ *ip can alias *fp, fp->f1, fp->f4, *bp, bp->b1, bp->b2, and bp->b3.
■ *sp can alias *fp, fp->f2 and fp->f3.
■ fp->f1 can alias bp->b1.
■ fp->f4 can alias bp->b3.

5.4 Examples of Memory Reference Constraints

Chapter 5 • Type-Based Alias Analysis 125

The compiler assumes that fp->fp1 does not alias bp->b2 because f1 is a field with offset 0 in a
structure, whereas b2 is a field with a 4-byte offset in a structure. Similarly, the compiler
assumes that fp->f1 does not alias bp->b3, and fp->f4 does not alias either bp->b1 or bp->b2.

If “5.4 Examples of Memory Reference Constraints” on page 124 is compiled with the
-xalias_level=layout option, the compiler assumes the following information:
■ *ip can alias *fp, *bp, fp->f1, fp->f4, bp->b1, bp->b2, and bp->b3.
■ *sp can alias *fp, fp->f2, and fp->f3.
■ fp->f1 can alias bp->b1 and *bp.
■ *fp and *bp can alias each other.

fp->f4 does not alias bp->b3 because f4 and b3 are not corresponding fields in the common
initial sequence of foo and bar.

If “5.4 Examples of Memory Reference Constraints” on page 124 is compiled with the
-xalias_level=strict option, the compiler assumes the following alias information:
■ *ip can alias *fp, fp->f1, fp->f4, *bp, bp->b1, bp->b2, and bp->b3.
■ *sp can alias *fp, fp->f2, and fp->f3.

With -xalias_level=strict, the compiler assumes that *fp, *bp, fp->f1, fp->f2, fp->f3,
fp->f4, bp->b1, bp->b2, and bp->b3 do not alias each other because foo and bar are not the
same when field names are ignored. However, fp aliases fp->f1 and bp aliases bp->b1.

If “5.4 Examples of Memory Reference Constraints” on page 124 is compiled with the
-xalias_level=std option, the compiler assumes the following alias information:
■ *ip can alias *fp, fp->f1, fp->f4, *bp, bp->b1, bp->b2, and bp->b3.
■ *sp can alias *fp, fp->f2, and fp->f3.

However, fp->f1 does not alias bp->b1, bp->b2, or bp->b3 because foo and bar are not the
same when field names are considered.

If “5.4 Examples of Memory Reference Constraints” on page 124 is compiled with the
-xalias_level=strong option, the compiler assumes the following alias information:
■ *ip does not alias fp->f1, fp->f4, bp->b1, bp->b2, and bp->b3 because a pointer, such as

*ip, should not point to the interior of a structure.
■ Similarly, *sp does not alias fp->f1 or fp->f3.
■ *ip does not alias *fp, *bp, and *sp due to differing types.
■ *sp does not alias *fp, *bp, and *ip due to differing types.

Consider the following example source code. It demonstrates the aliasing relationship of the
shown types when compiled with different levels of aliasing.

struct foo {

int f1;

int f2;

5.4 Examples of Memory Reference Constraints

Sun Studio 12: C User's Guide •126

int f3;

} *fp;

struct bar {

int b1;

int b2;

int b3;

} *bp;

If “5.4 Examples of Memory Reference Constraints” on page 124 is compiled with the
-xalias_level=any option, the compiler assumes the following alias information:

*fp, *bp, fp->f1, fp->f2, fp->f3, bp->b1, bp->b2 and bp->b3 all can alias each other because
any two memory accesses alias each other at the level of -xalias_level=any.

If “5.4 Examples of Memory Reference Constraints” on page 124 is compiled with the
-xalias_level=basic option, the compiler assumes the following alias information:

*fp, *bp, fp->f1, fp->f2, fp->f3, bp->b1, bp->b2 and bp->b3 all can alias each other. Any two
field accesses using pointers *fp and *bp can alias each other in this example because all the
structure fields are the same basic type.

If “5.4 Examples of Memory Reference Constraints” on page 124 is compiled with the
-xalias_level=weak option, the compiler assumes the following alias information:
■ *fp and *fp can alias each other.
■ fp->f1 can alias bp->b1, *bp and *fp.
■ fp->f2 can alias bp->b2, *bp and *fp.
■ fp->f3 can alias bp->b3, *bp and *fp.

However, -xalias_level=weak imposes the following restrictions:
■ fp->f1 does not alias bp->b2 or bp->b3 because f1 has an offset of zero, which is different

from that of b2 (four bytes) and b3 (eight bytes).
■ fp->f2 does not alias bp->b1 or bp->b3 because f2 has an offset of four bytes, which is

different from b1 (zero bytes) and b3 (eight bytes).
■ fp->f3 does not alias bp->b1 or bp->b2 because f3 has an offset of eight bytes, which is

different from b1 (zero bytes) and b2 (four bytes).

If “5.4 Examples of Memory Reference Constraints” on page 124 is compiled with the
-xalias_level=layout options, the compiler assumes the following alias information:
■ *fp and *bp can alias each other.
■ fp->f1 can alias bp->b1, *bp, and *fp.
■ fp->f2 can alias bp->b2, *bp, and *fp.
■ fp->f3 can alias bp->b3, *bp, and *fp.

However, -xalias_level=layout imposes the following restrictions:

5.4 Examples of Memory Reference Constraints

Chapter 5 • Type-Based Alias Analysis 127

■ fp->f1 does not alias bp->b2 or bp->b3 because field f1 corresponds to field b1 in the
common initial sequence of foo and bar.

■ fp->f2 does not alias bp->b1 or bp->b3 because f2 corresponds to field b2 in the common
initial sequence of foo and bar.

■ fp->f3 does not alias bp->b1 or bp->b2 because f3 corresponds to field b3 in the common
initial sequence of foo and bar.

If “5.4 Examples of Memory Reference Constraints” on page 124 is compiled with the
-xalias_level=strict option, the compiler assumes the following alias information:

■ *fp and *bp can alias each other.
■ fp->f1 can alias bp->b1, *bp, and *fp.
■ fp->f2 can alias bp->b2, *bp, and *fp.
■ fp->f3 can alias bp->b3, *bp, and *fp.

However, -xalias_level=strict imposes the following restrictions:

■ fp->f1 does not alias bp->b2 or bp->b3 because field f1 corresponds to field b1 in the
common initial sequence of foo and bar.

■ fp->f2 does not alias bp->b1 or bp->b3 because f2 corresponds to field b2 in the common
initial sequence of foo and bar.

■ fp->f3 does not alias bp->b1 or bp->b2 because f3 corresponds to field b3 in the common
initial sequence of foo and bar.

If “5.4 Examples of Memory Reference Constraints” on page 124 is compiled with the
-xalias_level=std option, the compiler assumes the following alias information:

fp->f1, fp->f2, fp->f3, bp->b1, bp->b2, and bp->b3 do not alias each other.

If “5.4 Examples of Memory Reference Constraints” on page 124 is compiled with the
-xalias_level=strong option, the compiler assumes the following alias information:

fp->f1, fp->f2, fp->f3, bp->b1, bp->b2, and bp->b3 do not alias each other.

Consider the following example source code that demonstrates that certain levels of aliasing
cannot handle interior pointers. For a definition of interior pointers see Table B–11.

struct foo {

int f1;

struct bar *f2;

struct bar *f3;

int f4;

int f5;

struct bar fb[10];

} *fp;

struct bar

5.4 Examples of Memory Reference Constraints

Sun Studio 12: C User's Guide •128

struct bar *b2;

struct bar *b3;

int b4;

} *bp;

bp=(struct bar*)(&fp->f2);

The dereference in “5.4 Examples of Memory Reference Constraints” on page 124 is not
supported by weak, layout, strict, or std. After the pointer assignment bp=(struct
bar*)(&fp->f2), the following pair of memory accesses touches the same memory locations:

■ fp->f2 and bp->b2 access the same memory location
■ fp->f3 and bp->b3 access the same memory location
■ fp->f4 and bp->b4 access the same memory location

However, under options weak, layout, strict, and std, the compiler assumes that fp->f2 and
bp->b2 do not alias. The compiler makes this assumption because b2 has an offset of zero,
which is different from the offset of f2 (four bytes), and foo and bar do not have a common
initial sequence. Similarly, the compiler also assumes that bp->b3 does not alias fp->f3, and
bp->b4 does not alias fp->f4.

Thus, the pointer assignment bp=(struct bar*)(&fp->f2)creates a situation in which the
compiler’s assumptions about alias information are incorrect. This may lead to incorrect
optimization.

Try compiling after you make the modifications shown in the following example.

struct foo {

int f1;

struct bar fb; /* Modified line */

#define f2 fb.b2 /* Modified line */

#define f3 fb.b3 /* Modified line */

#define f4 fb.b4 /* Modified line */

int f5;

struct bar fb[10];

} *fp;

struct bar

struct bar *b2;

struct bar *b3;

int b4;

} *bp;

bp=(struct bar*)(&fp->f2);

After the pointer assignment bp=(struct bar*)(&fp->f2), the following pair of memory
accesses touches the same memory locations:

■ fp->f2 and bp->b2

5.4 Examples of Memory Reference Constraints

Chapter 5 • Type-Based Alias Analysis 129

■ fp->f3 and bp->b3

■ fp->f4 and bp->b4

By examining the changes shown in the preceding code example, you can see that the
expression fp->f2 is another form of the expression fp->fb.b2. Because fp->fb is of type bar,
fp->f2 accesses the b2 field of bar. Furthermore, bp->b2 also accesses the b2 field of bar.
Therefore, the compiler assumes that fp->f2 aliases bp->b2. Similarly, the compiler assumes
that fp->f3 aliases bp->b3, and fp->f4 aliases bp->b4. As a result, the aliasing assumed by the
compiler matches the actual aliases caused by the pointer assignment.

Consider the following example source code.

struct foo {

int f1;

int f2;

} *fp;

struct bar {

int b1;

int b2;

} *bp;

struct cat {

int c1;

struct foo cf;

int c2;

int c3;

} *cp;

struct dog {

int d1;

int d2;

struct bar db;

int d3;

} *dp;

If “5.4 Examples of Memory Reference Constraints” on page 124 is compiled with the
-xalias_level=weak option, the compiler assumes the following alias information:

■ fp->f1 can alias bp->b1, cp->c1, dp->d1, cp->cf.f1, and df->db.b1.
■ fp->f2 can alias bp->b2, cp->cf.f1, dp->d2, cp->cf.f2, df->db.b2, cp->c2.
■ bp->b1 can alias fp->f1, cp->c1, dp->d1, cp->cf.f1, and df->db.b1.
■ bp->b2 can alias fp->f2, cp->cf.f1, dp->d2, cp->cf.f1, and df->db.b2.

fp->f2 can alias cp->c2 because *dp can alias *cp and *fp can alias dp->db.

■ cp->c1 can alias fp->f1, bp->b1, dp->d1, and dp->db.b1.

5.4 Examples of Memory Reference Constraints

Sun Studio 12: C User's Guide •130

■ cp->cf.f1 can alias fp->f1, fp->f2, bp->b1, bp->b2, dp->d2, and dp->d1.

cp->cf.f1 does not alias dp->db.b1.

■ cp->cf.f2 can alias fp->f2, bp->b2, dp->db.b1, and dp->d2.
■ cp->c2 can alias dp->db.b2.

cp->c2 does not alias dp->db.b1 and cp->c2 does not alias dp->d3.

With respect to offsets, cp->c2 can alias db->db.b1 only if *dp aliases cp->cf. However, if *dp
aliases cp->cf, then dp->db.b1 must alias beyond the end of foo cf, which is prohibited by
object restrictions. Therefore, the compiler assumes that cp->c2 cannot alias db->db.b1.

cp->c3 can alias dp->d3.

Notice that cp->c3 does not alias dp->db.b2. These memory references do not alias because the
offsets of the fields of the types involved in the dereferences differ and do not overlap. Based on
this, the compiler assumes they cannot alias.

■ dp->d1 can alias fp->f1, bp->b1, and cp->c1.
■ dp->d2 can alias fp->f2, bp->b2, and cp->cf.f1.
■ dp->db.b1 can alias fp->f1, bp->b1, and cp->c1.
■ dp->db.b2 can alias fp->f2, bp->b2, cp->c2, and cp->cf.f1.
■ dp->d3 can alias cp->c3.

Notice that dp->d3 does not alias cp->cf.f2. These memory references do not alias because the
offsets of the fields of the types involved in the dereferences differ and do not overlap. Based on
this, the compiler assumes they cannot alias.

If “5.4 Examples of Memory Reference Constraints” on page 124 is compiled with the
-xalias_level=layout option, the compiler assumes only the following alias information:

■ fp->f1, bp->b1, cp->c1 and dp->d1 all can alias each other.
■ fp->f2, bp->b2 and dp->d2 all can alias each other.
■ fp->f1 can alias cp->cf.f1 and dp->db.b1.
■ bp->b1 can alias cp->cf.f1 and dp->db.b1.
■ fp->f2 can alias cp->cf.f2 and dp->db.b2.
■ bp->b2 can alias cp->cf.f2 and dp->db.b2.

If “5.4 Examples of Memory Reference Constraints” on page 124 is compiled with the
-xalias_level=strict option, the compiler assumes only the following alias information:

■ fp->f1 and bp->b1 can alias each other.
■ fp->f2 and bp->b2 can alias each other.
■ fp->f1 can alias cp->cf.f1 and dp->db.b1.
■ bp->b1 can alias cp->cf.f1 and dp->db.b1.
■ fp->f2 can alias cp->cf.f2 and dp->db.b2.
■ bp->b2 can alias cp->cf.f2 and dp->db.b2.

5.4 Examples of Memory Reference Constraints

Chapter 5 • Type-Based Alias Analysis 131

If “5.4 Examples of Memory Reference Constraints” on page 124 is compiled with the
-xalias_level=std option, the compiler assumes only the following alias information:
■ fp->f1 can alias cp->cf.f1.
■ bp->b1 can alias dp->db.b1.
■ fp->f2 can alias cp->cf.f2.
■ bp->b2 can alias dp->db.b2.

Consider the following example source code.

struct foo {

short f1;

short f2;

int f3;

} *fp;

struct bar {

int b1;

int b2;

} *bp;

union moo {

struct foo u_f;

struct bar u_b;

} u;

Here are the compiler’s assumptions based on the following alias levels:

■ If “5.4 Examples of Memory Reference Constraints” on page 124 is compiled with the
-xalias_level=weak option, fp->f3 and bp->b2 can alias each other.

■ If “5.4 Examples of Memory Reference Constraints” on page 124 is compiled with the
-xalias_level=layout option, no fields can alias each other.

■ If “5.4 Examples of Memory Reference Constraints” on page 124 is compiled with the
-xalias_level=strict option, fp->f3 and bp->b2 can alias each other.

■ If “5.4 Examples of Memory Reference Constraints” on page 124 is compiled with the
-xalias_level=std option, no fields can alias each other.

Consider the following example source code.

struct bar;

struct foo {

struct foo *ffp;

struct bar *fbp;

} *fp;

struct bar {

5.4 Examples of Memory Reference Constraints

Sun Studio 12: C User's Guide •132

struct bar *bbp;

long b2;

} *bp;

Here are the compiler’s assumptions based on the following alias levels:

■ If “5.4 Examples of Memory Reference Constraints” on page 124 is compiled with the
-xalias_level=weak option, only fp->ffp and bp->bbp can alias each other.

■ If “5.4 Examples of Memory Reference Constraints” on page 124 is compiled with the
-xalias_level=layout option, only fp->ffp and bp->bbp can alias each other.

■ If “5.4 Examples of Memory Reference Constraints” on page 124 is compiled with the
-xalias_level=strict option, no fields can alias because the two struct types are still
different even after their tags are removed.

■ If “5.4 Examples of Memory Reference Constraints” on page 124 is compiled with the
-xalias_level=std option, no fields can alias because the two types and the tags are not the
same.

Consider the following example source code:

struct foo;

struct bar;

#pragma alias (struct foo, struct bar)

struct foo {

int f1;

int f2;

} *fp;

struct bar {

short b1;

short b2;

int b3;

} *bp;

The pragma in this example tells the compiler that foo and bar are allowed to alias each other.
The compiler makes the following assumptions about alias information:

■ fp->f1 can alias with bp->b1, bp->b2, and bp->b3

■ fp->f2 can alias with bp->b1, bp->b2, and bp->b3

5.4 Examples of Memory Reference Constraints

Chapter 5 • Type-Based Alias Analysis 133

134

Transitioning to ISO C

This chapter provides information which you can use to help you port applications for K&R
style C to conform with 9899:1990 ISO/IEC C standard. The information is presented under the
assumption that you are using -xc99=none because you do not want to conform with the newer,
9899:1999 ISO/IEC C standard. The C compiler defaults to -xc99=all which supports the
9899:1999 ISO/IEC C standard.

6.1 Basic Modes
The ISO C compiler allows both old-style and new-style C code. The compiler provides varying
degrees of compliance to the ISO C standard when you use the following -X (note case) options
with -xc99=none. -Xa is the default mode. Note that the compiler’s default mode is -xc99=all,
so its behavior under each of the -X options depends on the setting of -xc99.

6.1.1 -Xc

(c = conformance) Maximally conformant ISO C, without K&R C compatibility extensions.
The compiler issues errors and warnings for programs that use ISO C constructs.

6.1.2 -Xa

ISO C plus K&R C compatibility extensions, with semantic changes required by ISO C. Where
K&R C and ISO C specify different semantics for the same construct, the compiler issues
warnings about the conflict and uses the ISO C interpretation. This is the default mode.

6C H A P T E R 6

135

6.1.3 -Xt

(t = transition) ISO C plus K&R C compatibility extensions, without semantic changes required
by ISO C. Where K&R C and ISO C specify different semantics for the same construct, the
compiler issues warnings about the conflict and uses the K&R C interpretation.

6.1.4 -Xs

(s = K&R C) The compiled language includes all features compatible with ISO K&R C. The
compiler warns about all language constructs that have differing behavior between ISO C and
K&R C.

6.2 A Mixture of Old- and New-Style Functions
The 1990 ISO C standard’s most sweeping change to the language is the function prototype
borrowed from the C++ language. By specifying for each function the number and types of its
parameters, not only does every regular compile get the benefits of argument and parameter
checks (similar to those of lint) for each function call, but arguments are automatically
converted (just as with an assignment) to the type expected by the function. The 1990 ISO C
standard includes rules that govern the mixing of old- and new-style function declarations since
there are many, many lines of existing C code that could and should be converted to use
prototypes.

6.2.1 Writing New Code
When you write an entirely new program, use new-style function declarations (function
prototypes) in headers and new-style function declarations and definitions in other C source
files. However, if there is a possibility that someone will port the code to a machine with a
pre-ISO C compiler, we suggest you use the macro __STDC__ (which is defined only for ISO C
compilation systems) in both header and source files. Refer to “6.2.3 Mixing Considerations” on
page 137 for an example.

An ISO C-conforming compiler must issue a diagnostic whenever two incompatible
declarations for the same object or function are in the same scope. If all functions are declared
and defined with prototypes, and the appropriate headers are included by the correct source
files, all calls should agree with the definition of the functions. This protocol eliminates one of
the most common C programming mistakes.

6.2 A Mixture of Old- and New-Style Functions

Sun Studio 12: C User's Guide •136

6.2.2 Updating Existing Code
If you have an existing application and want the benefits of function prototypes, there are a
number of possibilities for updating, depending on how much of the code you would like to
change:

1. Recompile without making any changes.
Even with no coding changes, the compiler warns you about mismatches in parameter type
and number when invoked with the– v option.

2. Add function prototypes just to the headers.
All calls to global functions are covered.

3. Add function prototypes to the headers and start each source file with function prototypes
for its local (static) functions.
All calls to functions are covered, but doing this requires typing the interface for each local
function twice in the source file.

4. Change all function declarations and definitions to use function prototypes.

For most programmers, choices 2 and 3 are probably the best cost/benefit compromise.
Unfortunately, these options are precisely the ones that require detailed knowledge of the rules
for mixing old and new styles.

6.2.3 Mixing Considerations
For function prototype declarations to work with old-style function definitions, both must
specify functionally identical interfaces or have compatible types using ISO C’s terminology.

For functions with varying arguments, there can be no mixing of ISO C’s ellipsis notation and
the old-style varargs() function definition. For functions with a fixed number of parameters,
the situation is fairly straightforward: just specify the types of the parameters as they were
passed in previous implementations.

In K&R C, each argument was converted just before it was passed to the called function
according to the default argument promotions. These promotions specified that all integral
types narrower than int were promoted to int size, and any float argument was promoted to
double, hence simplifying both the compiler and libraries. Function prototypes are more
expressive—the specified parameter type is what is passed to the function.

Thus, if a function prototype is written for an existing (old-style) function definition, there
should be no parameters in the function prototype with any of the following types:

char signed char unsigned char float

6.2 A Mixture of Old- and New-Style Functions

Chapter 6 • Transitioning to ISO C 137

short signed short unsigned short

There still remain two complications with writing prototypes: typedef names and the
promotion rules for narrow unsigned types.

If parameters in old-style functions were declared using typedef names, such as off_t and
ino_t, it is important to know whether or not the typedef name designates a type that is
affected by the default argument promotions. For these two, off_t is a long, so it is appropriate
to use in a function prototype; ino_t used to be an unsigned short, so if it were used in a
prototype, the compiler issues a diagnostic because the old-style definition and the prototype
specify different and incompatible interfaces.

Just what should be used instead of an unsigned short leads us into the final complication. The
one biggest incompatibility between K&R C and the 1990 ISO C compiler is the promotion rule
for the widening of unsigned char and unsigned short to an int value. (See “6.4 Promotions:
Unsigned Versus Value Preserving” on page 142.) The parameter type that matches such an
old-style parameter depends on the compilation mode used when you compile:

■ -Xs and– Xt should use unsigned int
■ –Xa and– Xc should use int

The best approach is to change the old-style definition to specify either int or unsigned int
and use the matching type in the function prototype. You can always assign its value to a local
variable with the narrower type, if necessary, after you enter the function.

Watch out for the use of id’s in prototypes that may be affected by preprocessing. Consider the
following example:

#define status 23

void my_exit(int status); /* Normally, scope begins */

/* and ends with prototype */

Do not mix function prototypes with old-style function declarations that contain narrow types.

void foo(unsigned char, unsigned short);

void foo(i, j) unsigned char i; unsigned short j; {...}

Appropriate use of __STDC__ produces a header file that can be used for both the old and new
compilers:

header.h:

struct s { /* . . . */ };

#ifdef __STDC__

void errmsg(int, ...);

struct s *f(const char *);

int g(void);

#else

6.2 A Mixture of Old- and New-Style Functions

Sun Studio 12: C User's Guide •138

void errmsg();

struct s *f();

int g();

#endif

The following function uses prototypes and can still be compiled on an older system:

struct s *

#ifdef __STDC__

f(const char *p)

#else

f(p) char *p;

#endif

{

/* . . . */

}

Here is an updated source file (as with choice 3 above). The local function still uses an old-style
definition, but a prototype is included for newer compilers:

source.c:

#include “header.h”

typedef /* . . . */ MyType;

#ifdef __STDC__

static void del(MyType *);

/* . . . */

static void

del(p)

MyType *p;

{

/* . . . */

}

/* . . . */

6.3 Functions With Varying Arguments
In previous implementations, you could not specify the parameter types that a function
expected, but ISO C encourages you to use prototypes to do just that. To support functions such
as printf(), the syntax for prototypes includes a special ellipsis (…) terminator. Because an
implementation might need to do unusual things to handle a varying number of arguments,
ISO C requires that all declarations and the definition of such a function include the ellipsis
terminator.

Since there are no names for the “…” part of the parameters, a special set of macros contained in
stdarg.h gives the function access to these arguments. Earlier versions of such functions had to
use similar macros contained in varargs.h.

6.3 Functions With Varying Arguments

Chapter 6 • Transitioning to ISO C 139

Let us assume that the function we wish to write is an error handler called errmsg() that returns
void, and whose only fixed parameter is an int that specifies details about the error message.
This parameter can be followed by a file name, a line number, or both, and these are followed by
format and arguments, similar to those of printf(), that specify the text of the error message.

To allow our example to compile with earlier compilers, we make extensive use of the macro
__STDC__ which is defined only for ISO C compilation systems. Thus, the function’s declaration
in the appropriate header file is:

#ifdef __STDC__

void errmsg(int code, ...);

#else

void errmsg();

#endif

The file that contains the definition of errmsg() is where the old and new styles can get
complex. First, the header to include depends on the compilation system:

#ifdef __STDC__

#include <stdarg.h>

#else

#include <varargs.h>

#endif

#include <stdio.h>

stdio.h is included because we call fprintf() and vfprintf() later.

Next comes the definition for the function. The identifiers va_alist and va_dcl are part of the
old-style varargs.h interface.

void

#ifdef __STDC__

errmsg(int code, ...)

#else

errmsg(va_alist) va_dcl /* Note: no semicolon! */

#endif

{

/* more detail below */

}

Since the old-style variable argument mechanism did not allow us to specify any fixed
parameters, we must arrange for them to be accessed before the varying portion. Also, due to
the lack of a name for the “…” part of the parameters, the new va_start() macro has a second
argument—the name of the parameter that comes just before the “…” terminator.

As an extension, Sun ISO C allows functions to be declared and defined with no fixed
parameters, as in:

int f(...);

6.3 Functions With Varying Arguments

Sun Studio 12: C User's Guide •140

For such functions, va_start() should be invoked with an empty second argument, as in:

va_start(ap,)

The following is the body of the function:

{

va_list ap;

char *fmt;

#ifdef __STDC__

va_start(ap, code);

#else

int code;

va_start(ap);

/* extract the fixed argument */

code = va_arg(ap, int);

#endif

if (code & FILENAME)

(void)fprintf(stderr, "\"%s\": ", va_arg(ap, char *));

if (code & LINENUMBER)

(void)fprintf(stderr, "%d: ", va_arg(ap, int));

if (code & WARNING)

(void)fputs("warning: ", stderr);

fmt = va_arg(ap, char *);

(void)vfprintf(stderr, fmt, ap);

va_end(ap);

}

Both the va_arg() and va_end() macros work the same for the old-style and ISO C versions.
Because va_arg() changes the value of ap, the call to vfprintf() cannot be:

(void)vfprintf(stderr, va_arg(ap, char *), ap);

The definitions for the macros FILENAME, LINENUMBER, and WARNING are presumably contained
in the same header as the declaration of errmsg().

A sample call to errmsg() could be:

errmsg(FILENAME, "<command line>", "cannot open: %s\n",
argv[optind]);

6.3 Functions With Varying Arguments

Chapter 6 • Transitioning to ISO C 141

6.4 Promotions: Unsigned Versus Value Preserving
The following information appears in the Rationale section that accompanies the 1990 ISO C
Standard: “QUIET CHANGE”. A program that depends on unsigned preserving arithmetic
conversions will behave differently, probably without complaint. This is considered to be the
most serious change made by the Committee to a widespread current practice.

This section explores how this change affects our code.

6.4.1 Background
According to K&R, The C Programming Language (First Edition), unsigned specified exactly
one type; there were no unsigned chars, unsigned shorts, or unsigned longs, but most C
compilers added these very soon thereafter. Some compilers did not implement unsigned long
but included the other two. Naturally, implementations chose different rules for type
promotions when these new types mixed with others in expressions.

In most C compilers, the simpler rule, “unsigned preserving,” is used: when an unsigned type
needs to be widened, it is widened to an unsigned type; when an unsigned type mixes with a
signed type, the result is an unsigned type.

The other rule, specified by ISO C, is known as “value preserving,” in which the result type
depends on the relative sizes of the operand types. When an unsigned char or unsigned short
is widened, the result type is int if an int is large enough to represent all the values of the
smaller type. Otherwise, the result type is unsigned int. The value preserving rule produces the
least surprise arithmetic result for most expressions.

6.4.2 Compilation Behavior
Only in the transition or ISO modes (-Xt or -Xs) does the ISO C compiler use the unsigned
preserving promotions; in the other two modes, conforming (–Xc) and ISO (–Xa), the value
preserving promotion rules are used.

6.4.3 First Example: The Use of a Cast
In the following code, assume that an unsigned char is smaller than an int.

int f(void)

{

int i = -2;

unsigned char uc = 1;

return (i + uc) < 17;

}

6.4 Promotions: Unsigned Versus Value Preserving

Sun Studio 12: C User's Guide •142

The code above causes the compiler to issue the following warning when you use the
-xtransition option:

line 6: warning: semantics of "<" change in ISO C; use explicit cast

The result of the addition has type int (value preserving) or unsigned int (unsigned
preserving), but the bit pattern does not change between these two. On a two’s-complement
machine, we have:

i: 111...110 (-2)

+ uc: 000...001 (1)

===================

111...111 (-1 or UINT_MAX)

This bit representation corresponds to -1 for int and UINT_MAX for unsigned int. Thus, if the
result has type int, a signed comparison is used and the less-than test is true; if the result has
type unsigned int, an unsigned comparison is used and the less-than test is false.

The addition of a cast serves to specify which of the two behaviors is desired:

value preserving:

(i + (int)uc) < 17

unsigned preserving:

(i + (unsigned int)uc) < 17

Since differing compilers chose different meanings for the same code, this expression can be
ambiguous. The addition of a cast is as much to help the reader as it is to eliminate the warning
message.

6.4.4 Bit-fields
The same situation applies to the promotion of bit-field values. In ISO C, if the number of bits in
an int or unsigned int bit-field is less than the number of bits in an int, the promoted type is
int; otherwise, the promoted type is unsigned int. In most older C compilers, the promoted
type is unsigned int for explicitly unsigned bit-fields, and int otherwise.

Similar use of casts can eliminate situations that are ambiguous.

6.4.5 Second Example: Same Result
In the following code, assume that both unsigned short and unsigned char are narrower than
int.

int f(void)

{

unsigned short us;

6.4 Promotions: Unsigned Versus Value Preserving

Chapter 6 • Transitioning to ISO C 143

unsigned char uc;

return uc < us;

}

In this example, both automatics are either promoted to int or to unsigned int, so the
comparison is sometimes unsigned and sometimes signed. However, the C compiler does not
warn you because the result is the same for the two choices.

6.4.6 Integral Constants
As with expressions, the rules for the types of certain integral constants have changed. In K&R
C, an unsuffixed decimal constant had type int only if its value fit in an int; an unsuffixed octal
or hexadecimal constant had type int only if its value fit in an unsigned int. Otherwise, an
integral constant had type long. At times, the value did not fit in the resulting type. In the 1990
ISO/IEC C standard, the constant type is the first type encountered in the following list that
corresponds to the value:
■ unsuffixed decimal: int, long, unsigned long
■ unsuffixed octal or hexadecimal: int, unsigned int, long, unsigned long
■ U suffixed: unsigned int, unsigned long
■ L suffixed: long, unsigned long
■ UL suffixed: unsigned long

The ISO C compiler warns you, when you use the -xtransition option, about any expression
whose behavior might change according to the typing rules of the constants involved. The old
integral constant typing rules are used only in the transition mode; the ISO and conforming
modes use the new rules.

Note – The rules for typing unsuffixed decimal constants has changed in accordance with the
1999 ISO C standard. See “2.1.1 Integral Constants” on page 33 .

6.4.7 Third Example: Integral Constants
In the following code, assume ints are 16 bits.

int f(void)

{

int i = 0;

return i > 0xffff;

}

Because the hexadecimal constant’s type is either int (with a value of– 1 on a
two’s-complement machine) or an unsigned int (with a value of 65535), the comparison is true
in– Xs and -Xt modes, and false in– Xa and– Xc modes.

6.4 Promotions: Unsigned Versus Value Preserving

Sun Studio 12: C User's Guide •144

Again, an appropriate cast clarifies the code and suppresses a warning:

-Xt, -Xs modes:

i > (int)0xffff

-Xa, -Xc modes:

i > (unsigned int)0xffff

or

i > 0xffffU

The U suffix character is a new feature of ISO C and probably produces an error message with
older compilers.

6.5 Tokenization and Preprocessing
Probably the least specified part of previous versions of C concerned the operations that
transformed each source file from a bunch of characters into a sequence of tokens, ready to
parse. These operations included recognition of white space (including comments), bundling
consecutive characters into tokens, handling preprocessing directive lines, and macro
replacement. However, their respective ordering was never guaranteed.

6.5.1 ISO C Translation Phases
The order of these translation phases is specified by ISO C.

Every trigraph sequence in the source file is replaced. ISO C has exactly nine trigraph sequences
that were invented solely as a concession to deficient character sets, and are three-character
sequences that name a character not in the ISO 646-1983 character set:

TABLE 6–1 Trigraph Sequences

Trigraph Sequence Converts to

??= #

??- ~

??([

??)]

??! |

??< {

??> }

6.5 Tokenization and Preprocessing

Chapter 6 • Transitioning to ISO C 145

TABLE 6–1 Trigraph Sequences (Continued)
Trigraph Sequence Converts to

??/ \

??’ ^

These sequences must be understood by ISO C compilers, but we do not recommend their use.
The ISO C compiler warns you, when you use the -xtransition option, whenever it replaces a
trigraph while in transition (–Xt) mode, even in comments. For example, consider the
following:

/* comment *??/

/* still comment? */

The ??/ becomes a backslash. This character and the following newline are removed. The
resulting characters are:

/* comment */* still comment? */

The first / from the second line is the end of the comment. The next token is the *.

1. Every backslash/new-line character pair is deleted.

2. The source file is converted into preprocessing tokens and sequences of white space. Each
comment is effectively replaced by a space character.

3. Every preprocessing directive is handled and all macro invocations are replaced. Each
#included source file is run through the earlier phases before its contents replace the
directive line.

4. Every escape sequence (in character constants and string literals) is interpreted.

5. Adjacent string literals are concatenated.

6. Every preprocessing token is converted into a regular token; the compiler properly parses
these and generates code.

7. All external object and function references are resolved, resulting in the final program.

6.5.2 Old C Translation Phases
Previous C compilers did not follow such a simple sequence of phases, nor were there any
guarantees for when these steps were applied. A separate preprocessor recognized tokens and
white space at essentially the same time as it replaced macros and handled directive lines. The
output was then completely retokenized by the compiler proper, which then parsed the
language and generated code.

6.5 Tokenization and Preprocessing

Sun Studio 12: C User's Guide •146

Because the tokenization process within the preprocessor was a moment-by-moment operation
and macro replacement was done as a character-based, not token-based, operation, the tokens
and white space could have a great deal of variation during preprocessing.

There are a number of differences that arise from these two approaches. The rest of this section
discusses how code behavior may change due to line splicing, macro replacement, stringizing,
and token pasting, which occur during macro replacement.

6.5.3 Logical Source Lines
In K&R C, backslash/new-line pairs were allowed only as a means to continue a directive, a
string literal, or a character constant to the next line. ISO C extended the notion so that a
backslash/new-line pair can continue anything to the next line. The result is a logical source
line. Therefore, any code that relied on the separate recognition of tokens on either side of a
backslash/new-line pair does not behave as expected.

6.5.4 Macro Replacement
The macro replacement process has never been described in detail prior to ISO C. This
vagueness spawned a great many divergent implementations. Any code that relied on anything
fancier than manifest constant replacement and simple function–like macros was probably not
truly portable. This manual cannot uncover all the differences between the old C macro
replacement implementation and the ISO C version. Nearly all uses of macro replacement with
the exception of token pasting and stringizing produce exactly the same series of tokens as
before. Furthermore, the ISO C macro replacement algorithm can do things not possible in the
old C version. For example,

#define name (*name)

causes any use of name to be replaced with an indirect reference through name. The old C
preprocessor would produce a huge number of parentheses and stars and eventually produce an
error about macro recursion.

The major change in the macro replacement approach taken by ISO C is to require macro
arguments, other than those that are operands of the macro substitution operators # and ##, to
be expanded recursively prior to their substitution in the replacement token list. However, this
change seldom produces an actual difference in the resulting tokens.

6.5 Tokenization and Preprocessing

Chapter 6 • Transitioning to ISO C 147

6.5.5 Using Strings

Note – In ISO C, the examples below marked with a ? produce a warning about use of old
features, when you use the -xtransition option. Only in the transition mode (–Xt and -Xs) is
the result the same as in previous versions of C.

In K&R C, the following code produced the string literal "x y!":

#define str(a) "a!" ?

str(x y)

Thus, the preprocessor searched inside string literals and character constants for characters that
looked like macro parameters. ISO C recognized the importance of this feature, but could not
condone operations on parts of tokens. In ISO C, all invocations of the above macro produce
the string literal "a!". To achieve the old effect in ISO C, we make use of the # macro
substitution operator and the concatenation of string literals.

#define str(a) #a "!"
str(x y)

The above code produces the two string literals "x y" and "!" which, after concatenation,
produces the identical "x y!".

There is no direct replacement for the analogous operation for character constants. The major
use of this feature was similar to the following:

#define CNTL(ch) (037 & ’ch’) ?

CNTL(L)

which produced

(037 & ’L’)

which evaluates to the ASCII control-L character. The best solution we know of is to change all
uses of this macro to:

#define CNTL(ch) (037 & (ch))

CNTL(’L’)

This code is more readable and more useful, as it can also be applied to expressions.

6.5.6 Token Pasting
In K&R C, there were at least two ways to combine two tokens. Both invocations in the
following produced a single identifier x1 out of the two tokens x and 1.

6.5 Tokenization and Preprocessing

Sun Studio 12: C User's Guide •148

#define self(a) a

#define glue(a,b) a/**/b ?

self(x)1

glue(x,1)

Again, ISO C could not sanction either approach. In ISO C, both the above invocations would
produce the two separate tokens x and 1. The second of the above two methods can be rewritten
for ISO C by using the ## macro substitution operator:

#define glue(a,b) a ## b

glue(x, 1)

and ## should be used as macro substitution operators only when __STDC__ is defined. Since
is an actual operator, the invocation can be much freer with respect to white space in both the
definition and invocation.

There is no direct approach to effect the first of the two old-style pasting schemes, but since it
put the burden of the pasting at the invocation, it was used less frequently than the other form.

6.6 const and volatile

The keyword const was one of the C++ features that found its way into ISO C. When an
analogous keyword, volatile, was invented by the ISO C Committee, the “type qualifier”
category was created.

6.6.1 Types, Only for lvalue
const and volatile are part of an identifier’s type, not its storage class. However, they are often
removed from the topmost part of the type when an object’s value is fetched in the evaluation of
an expression—exactly at the point when an lvalue becomes an rvalue. These terms arise
from the prototypical assignment “L=R”; in which the left side must still refer directly to an
object (an lvalue) and the right side need only be a value (an rvalue). Thus, only expressions
that are lvalues can be qualified by const or volatile or both.

6.6.2 Type Qualifiers in Derived Types
The type qualifiers may modify type names and derived types. Derived types are those parts of
C’s declarations that can be applied over and over to build more and more complex types:
pointers, arrays, functions, structures, and unions. Except for functions, one or both type
qualifiers can be used to change the behavior of a derived type.

For example,

6.6 const and volatile

Chapter 6 • Transitioning to ISO C 149

const int five = 5;

declares and initializes an object with type const int whose value is not changed by a correct
program. The order of the keywords is not significant to C. For example, the declarations:

int const five = 5;

and

const five = 5;

are identical to the above declaration in its effect.

The declaration

const int *pci = &five;

declares an object with type pointer to const int, which initially points to the previously
declared object. The pointer itself does not have a qualified type—it points to a qualified type,
and can be changed to point to essentially any int during program execution. pci cannot be
used to modify the object to which it points unless a cast is used, as in the following:

*(int *)pci = 17;

If pci actually points to a const object, the behavior of this code is undefined.

The declaration

extern int *const cpi;

says that somewhere in the program there exists a definition of a global object with type const
pointer to int. In this case, cpi’s value will not be changed by a correct program, but it can be
used to modify the object to which it points. Notice that const comes after the * in the above
declaration. The following pair of declarations produces the same effect:

typedef int *INT_PTR;

extern const INT_PTR cpi;

These declarations can be combined as in the following declaration in which an object is
declared to have type const pointer to const int:

const int *const cpci;

6.6 const and volatile

Sun Studio 12: C User's Guide •150

6.6.3 constMeans readonly
In hindsight, readonly would have been a better choice for a keyword than const. If one reads
const in this manner, declarations such as:

char *strcpy(char *, const char *);

are easily understood to mean that the second parameter is only used to read character values,
while the first parameter overwrites the characters to which it points. Furthermore, despite the
fact that in the above example, the type of cpi is a pointer to a const int, you can still change
the value of the object to which it points through some other means, unless it actually points to
an object declared with const int type.

6.6.4 Examples of constUsage
The two main uses for const are to declare large compile-time initialized tables of information
as unchanging, and to specify that pointer parameters do not modify the objects to which they
point.

The first use potentially allows portions of the data for a program to be shared by other
concurrent invocations of the same program. It may cause attempts to modify this invariant
data to be detected immediately by means of some sort of memory protection fault, since the
data resides in a read-only portion of memory.

The second use helps locate potential errors before generating a memory fault during that
demo. For example, functions that temporarily place a null character into the middle of a string
are detected at compile time, if passed a pointer to a string that cannot be so modified.

6.6.5 volatileMeans Exact Semantics
So far, the examples have all used const because it’s conceptually simpler. But what does
volatile really mean? To a compiler writer, it has one meaning: take no code generation
shortcuts when accessing such an object. In ISO C, it is a programmer’s responsibility to declare
every object that has the appropriate special properties with a volatile qualified type.

6.6.6 Examples of volatileUsage
The usual four examples of volatile objects are:

■ An object that is a memory-mapped I/O port
■ An object that is shared between multiple concurrent processes
■ An object that is modified by an asynchronous signal handler

6.6 const and volatile

Chapter 6 • Transitioning to ISO C 151

■ An automatic storage duration object declared in a function that calls setjmp, and whose
value is changed between the call to setjmp and a corresponding call to longjmp

The first three examples are all instances of an object with a particular behavior: its value can be
modified at any point during the execution of the program. Thus, the seemingly infinite loop:

flag = 1;

while (flag);

is valid as long as flag has a volatile qualified type. Presumably, some asynchronous event
sets flag to zero in the future. Otherwise, because the value of flag is unchanged within the
body of the loop, the compilation system is free to change the above loop into a truly infinite
loop that completely ignores the value of flag.

The fourth example, involving variables local to functions that call setjmp, is more involved.
The fine print about the behavior of setjmp and longjmp notes that there are no guarantees
about the values for objects matching the fourth case. For the most desirable behavior, it is
necessary for longjmp to examine every stack frame between the function calling setjmp and
the function calling longjmp for saved register values. The possibility of asynchronously created
stack frames makes this job even harder.

When an automatic object is declared with a volatile qualified type, the compilation system
knows that it has to produce code that exactly matches what the programmer wrote. Therefore,
the most recent value for such an automatic object is always in memory and not just in a
register, and is guaranteed to be up-to-date when longjmp is called.

6.7 Multibyte Characters and Wide Characters
At first, the internationalization of ISO C affected only library functions. However, the final
stage of internationalization—multibyte characters and wide characters—also affected the
language proper.

6.7.1 Asian Languages Require Multibyte Characters
The basic difficulty in an Asian-language computer environment is the huge number of
ideograms needed for I/O. To work within the constraints of usual computer architectures,
these ideograms are encoded as sequences of bytes. The associated operating systems,
application programs, and terminals understand these byte sequences as individual ideograms.
Moreover, all of these encodings allow intermixing of regular single-byte characters with the
ideogram byte sequences. Just how difficult it is to recognize distinct ideograms depends on the
encoding scheme used.

The term “multibyte character” is defined by ISO C to denote a byte sequence that encodes an
ideogram, no matter what encoding scheme is employed. All multibyte characters are members

6.7 Multibyte Characters and Wide Characters

Sun Studio 12: C User's Guide •152

of the “extended character set.” A regular single-byte character is just a special case of a
multibyte character. The only requirement placed on the encoding is that no multibyte
character can use a null character as part of its encoding.

ISO C specifies that program comments, string literals, character constants, and header names
are all sequences of multibyte characters.

6.7.2 Encoding Variations
The encoding schemes fall into two camps. The first is one in which each multibyte character is
self-identifying, that is, any multibyte character can simply be inserted between any pair of
multibyte characters.

The second scheme is one in which the presence of special shift bytes changes the interpretation
of subsequent bytes. An example is the method used by some character terminals to get in and
out of line-drawing mode. For programs written in multibyte characters with a
shift-state-dependent encoding, ISO C requires that each comment, string literal, character
constant, and header name must both begin and end in the unshifted state.

6.7.3 Wide Characters
Some of the inconvenience of handling multibyte characters would be eliminated if all
characters were of a uniform number of bytes or bits. Since there can be thousands or tens of
thousands of ideograms in such a character set, a 16-bit or 32-bit sized integral value should be
used to hold all members. (The full Chinese alphabet includes more than 65,000 ideograms!)
ISO C includes the typedef name wchar_t as the implementation-defined integral type large
enough to hold all members of the extended character set.

For each wide character, there is a corresponding multibyte character, and vice versa; the wide
character that corresponds to a regular single-byte character is required to have the same value
as its single-byte value, including the null character. However, there is no guarantee that the
value of the macro EOF can be stored in a wchar_t, just as EOF might not be representable as a
char.

6.7.4 Conversion Functions
The 1990 ISO/IEC C standard provides five library functions that manage multibyte characters
and wide characters, the 1999 ISO/IEC C standard provides many more such functions.

6.7 Multibyte Characters and Wide Characters

Chapter 6 • Transitioning to ISO C 153

6.7.5 C Language Features
To give even more flexibility to the programmer in an Asian-language environment, ISO C
provides wide character constants and wide string literals. These have the same form as their
non-wide versions, except that they are immediately prefixed by the letter L:

■ ’x’ regular character constant
■ ’¥’ regular character constant
■ L’x’ wide character constant
■ L’¥’ wide character constant
■ "abc¥xyz" regular string literal
■ L"abcxyz" wide string literal

Multibyte characters are valid in both the regular and wide versions. The sequence of bytes
necessary to produce the ideogram¥ is encoding-specific, but if it consists of more than one
byte, the value of the character constant ’¥’ is implementation-defined, just as the value of ’ab’ is
implementation-defined. Except for escape sequences, a regular string literal contains exactly
the bytes specified between the quotes, including the bytes of each specified multibyte character.

When the compilation system encounters a wide character constant or wide string literal, each
multibyte character is converted into a wide character, as if by calling the mbtowc() function.
Thus, the type of L’¥’ is wchar_t; the type of abc¥xyz is array of wchar_t with length eight. Just
as with regular string literals, each wide string literal has an extra zero-valued element
appended, but in these cases, it is a wchar_t with value zero.

Just as regular string literals can be used as a shorthand method for character array
initialization, wide string literals can be used to initialize wchar_t arrays:

wchar_t *wp = L"a¥z";
wchar_t x[] = L"a¥z";
wchar_t y[] = {L’a’, L’¥’, L’z’, 0};

wchar_t z[] = {’a’, L’¥’, ’z’, ’\0’};

In the above example, the three arrays x, y, and z, and the array pointed to by wp, have the same
length. All are initialized with identical values.

Finally, adjacent wide string literals are concatenated, just as with regular string literals.
However, with the 1990 ISO/IEC C standard, adjacent regular and wide string literals produce
undefined behavior. Also, the 1990 ISO/IEC C standard specifies that a compiler is not required
to produce an error if it does not accept such concatenations.

6.7 Multibyte Characters and Wide Characters

Sun Studio 12: C User's Guide •154

6.8 Standard Headers and Reserved Names
Early in the standardization process, the ISO Standards Committee chose to include library
functions, macros, and header files as part of ISO C.

This section presents the various categories of reserved names and some rationale for their
reservations. At the end is a set of rules to follow that can steer your programs clear of any
reserved names.

6.8.1 Standard Headers
The standard headers are:

TABLE 6–2 Standard Headers

assert.h locale.h stddef.h

ctype.h math.h stdio.h

errno.h setjmp.h stdlib.h

float.h signal.h string.h

limits.h stdarg.h time.h

Most implementations provide more headers, but a strictly conforming 1990 ISO/IEC C
program can only use these.

Other standards disagree slightly regarding the contents of some of these headers. For example,
POSIX (IEEE 1003.1) specifies that fdopen is declared in stdio.h. To allow these two standards
to coexist, POSIX requires the macro _POSIX_SOURCE to be #defined prior to the inclusion of
any header to guarantee that these additional names exist. In its Portability Guide, X/Open has
also used this macro scheme for its extensions. X/Open’s macro is _XOPEN_SOURCE.

ISO C requires the standard headers to be both self-sufficient and idempotent. No standard
header needs any other header to be #included before or after it, and each standard header can
be #included more than once without causing problems. The Standard also requires that its
headers be #included only in safe contexts, so that the names used in the headers are
guaranteed to remain unchanged.

6.8.2 Names Reserved for Implementation Use
The Standard places further restrictions on implementations regarding their libraries. In the
past, most programmers learned not to use names like read and write for their own functions
on UNIX Systems. ISO C requires that only names reserved by the Standard be introduced by
references within the implementation.

6.8 Standard Headers and Reserved Names

Chapter 6 • Transitioning to ISO C 155

Thus, the Standard reserves a subset of all possible names for implementations to use. This class
of names consists of identifiers that begin with an underscore and continue with either another
underscore or a capital letter. The class of names contains all names matching the following
regular expression:

_[_A-Z][0-9_a-zA-Z]*

Strictly speaking, if your program uses such an identifier, its behavior is undefined. Thus,
programs using _POSIX_SOURCE (or _XOPEN_SOURCE) have undefined behavior.

However, undefined behavior comes in different degrees. If, in a POSIX-conforming
implementation you use _POSIX_SOURCE, you know that your program’s undefined behavior
consists of certain additional names in certain headers, and your program still conforms to an
accepted standard. This deliberate loophole in the ISO C standard allows implementations to
conform to seemingly incompatible specifications. On the other hand, an implementation that
does not conform to the POSIX standard is free to behave in any manner when encountering a
name such as _POSIX_SOURCE.

The Standard also reserves all other names that begin with an underscore for use in header files
as regular file scope identifiers and as tags for structures and unions, but not in local scopes. The
common practice of having functions named _filbuf and _doprnt to implement hidden parts
of the library is allowed.

6.8.3 Names Reserved for Expansion
In addition to all the names explicitly reserved, the 1990 ISO/IEC C standard also reserves (for
implementations and future standards) names matching certain patterns:

TABLE 6–3 Names Reserved for Expansion

File Reserved Name Pattern

errno.h E[0-9A-Z].*

ctype.h (to|is)[a-z].*

locale.h LC_[A-Z].*

math.h current function names[fl]

signal.h (SIG|SIG_)[A-Z].*

stdlib.h str[a-z].*

string.h (str|mem|wcs)[a-z].*

6.8 Standard Headers and Reserved Names

Sun Studio 12: C User's Guide •156

In the above lists, names that begin with a capital letter are macros and are reserved only when
the associated header is included. The rest of the names designate functions and cannot be used
to name any global objects or functions.

6.8.4 Names Safe to Use
There are four simple rules you can follow to keep from colliding with any ISO C reserved
names:

■ #include all system headers at the top of your source files (except possibly after a #define of
_POSIX_SOURCE or _XOPEN_SOURCE, or both).

■ Do not define or declare any names that begin with an underscore.
■ Use an underscore or a capital letter somewhere within the first few characters of all file

scope tags and regular names. Beware of the va_ prefix found in stdarg.h or varargs.h.
■ Use a digit or a non-capital letter somewhere within the first few characters of all macro

names. Almost all names beginning with an E are reserved if errno.h is #included.

These rules are just a general guideline to follow, as most implementations will continue to add
names to the standard headers by default.

6.9 Internationalization
“6.7 Multibyte Characters and Wide Characters” on page 152 introduced the
internationalization of the standard libraries. This section discusses the affected library
functions and gives some hints on how programs should be written to take advantage of these
features. The section only discusses internationalization with respect to the 1990 ISO/IEC C
standard. The 1999 ISO/IEC C standard has no significant extension to support
internationalization over those discussed here.

6.9.1 Locales
At any time, a C program has a current locale—a collection of information that describes the
conventions appropriate to some nationality, culture, and language. Locales have names that
are strings. The only two standardized locale names are "C" and "". Each program begins in the
"C" locale, which causes all library functions to behave just like they have historically. The ""
locale is the implementation’s best guess at the correct set of conventions appropriate to the
program’s invocation. "C" and "" can cause identical behavior. Other locales may be provided by
implementations.

For the purposes of practicality and expediency, locales are partitioned into a set of categories. A
program can change the complete locale, or just one or more categories. Generally, each

6.9 Internationalization

Chapter 6 • Transitioning to ISO C 157

category affects a set of functions disjoint from the functions affected by other categories, so
temporarily changing one category for a little while can make sense.

6.9.2 The setlocale() Function
The setlocale() function is the interface to the program’s locale. In general, any program that
uses the invocation country’s conventions should place a call such as:

#include <locale.h>

/*...*/

setlocale(LC_ALL, "");

early in the program’s execution path. This call causes the program’s current locale to change to
the appropriate local version, since LC_ALL is the macro that specifies the entire locale instead of
one category. The following are the standard categories:

LC_COLLATE sorting information

LC_CTYPE character classification information

LC_MONETARY currency printing information

LC_NUMERIC numeric printing information

LC_TIME date and time printing information

Any of these macros can be passed as the first argument to setlocale() to specify that
category.

The setlocale() function returns the name of the current locale for a given category (or
LC_ALL) and serves in an inquiry-only capacity when its second argument is a null pointer.
Thus, code similar to the following can be used to change the locale or a portion thereof for a
limited duration:

#include <locale.h>

/*...*/

char *oloc;

/*...*/

oloc = setlocale(LC_category, NULL);

if (setlocale(LC_category, "new") != 0)

{

/* use temporarily changed locale */

(void)setlocale(LC_category, oloc);

}

Most programs do not need this capability.

6.9 Internationalization

Sun Studio 12: C User's Guide •158

6.9.3 Changed Functions
Wherever possible and appropriate, existing library functions were extended to include
locale-dependent behavior. These functions came in two groups:
■ Those declared by the ctype.h header (character classification and conversion), and
■ Those that convert to and from printable and internal forms of numeric values, such as

printf() and strtod().

All ctype.h predicate functions, except isdigit() and isxdigit(), can return nonzero (true)
for additional characters when the LC_CTYPE category of the current locale is other than "C". In a
Spanish locale, isalpha(’ñ’) should be true. Similarly, the character conversion functions,
tolower() and toupper(), should appropriately handle any extra alphabetic characters
identified by the isalpha() function. The ctype.h functions are almost always macros that are
implemented using table lookups indexed by the character argument. Their behavior is
changed by resetting the table(s) to the new locale’s values, and therefore there is no
performance impact.

Those functions that write or interpret printable floating values can change to use a
decimal-point character other than period (.) when the LC_NUMERIC category of the current
locale is other than "C". There is no provision for converting any numeric values to printable
form with thousands separator-type characters. When converting from a printable form to an
internal form, implementations are allowed to accept such additional forms, again in other than
the "C" locale. Those functions that make use of the decimal-point character are the printf()
and scanf() families, atof(), and strtod(). Those functions that are allowed
implementation-defined extensions are atof(), atoi(), atol(), strtod(), strtol(),
strtoul(), and the scanf() family.

6.9.4 New Functions
Certain locale-dependent capabilities were added as new standard functions. Besides
setlocale(), which allows control over the locale itself, the Standard includes the following
new functions:

localeconv() numeric/monetary conventions

strcoll() collation order of two strings

strxfrm() translate string for collation

strxfrm() translate string for collation

In addition, there are the multibyte functions mblen(), mbtowc(), mbstowcs(), wctomb(), and
wcstombs().

6.9 Internationalization

Chapter 6 • Transitioning to ISO C 159

The localeconv() function returns a pointer to a structure containing information useful for
formatting numeric and monetary information appropriate to the current locale’s LC_NUMERIC
and LC_MONETARY categories. This is the only function whose behavior depends on more than
one category. For numeric values, the structure describes the decimal-point character, the
thousands separator, and where the separator(s) should be located. There are fifteen other
structure members that describe how to format a monetary value.

The strcoll() function is analogous to the strcmp() function, except that the two strings are
compared according to the LC_COLLATE category of the current locale. The strxfrm() function
can also be used to transform a string into another, such that any two such after-translation
strings can be passed to strcmp(), and get an ordering analogous to what strcoll() would
have returned if passed the two pre-translation strings.

The strftime() function provides formatting similar to that used with sprintf() of the values
in a struct tm, along with some date and time representations that depend on the LC_TIME
category of the current locale. This function is based on the ascftime() function released as
part of UNIX System V Release 3.2.

6.10 Grouping and Evaluation in Expressions
One of the choices made by Dennis Ritchie in the design of C was to give compilers a license to
rearrange expressions involving adjacent operators that are mathematically commutative and
associative, even in the presence of parentheses. This is explicitly noted in the appendix in the
The C Programming Language by Kernighan and Ritchie. However, ISO C does not grant
compilers this same freedom.

This section discusses the differences between these two definitions of C and clarifies the
distinctions between an expression’s side effects, grouping, and evaluation by considering the
expression statement from the following code fragment.

int i, *p, f(void), g(void);

/*...*/

i = *++p + f() + g();

6.10.1 Definitions
The side effects of an expression are its modifications to memory and its accesses to volatile

qualified objects. The side effects in the above expression are the updating of i and p and any
side effects contained within the functions f() and g().

An expression’s grouping is the way values are combined with other values and operators. The
above expression’s grouping is primarily the order in which the additions are performed.

6.10 Grouping and Evaluation in Expressions

Sun Studio 12: C User's Guide •160

An expression’s evaluation includes everything necessary to produce its resulting value. To
evaluate an expression, all specified side effects must occur anywhere between the previous and
next sequence point, and the specified operations are performed with a particular grouping. For
the above expression, the updating of i and p must occur after the previous statement and by
the ; of this expression statement; the calls to the functions can occur in either order, any time
after the previous statement, but before their return values are used. In particular, the operators
that cause memory to be updated have no requirement to assign the new value before the value
of the operation is used.

6.10.2 The K&R C Rearrangement License
The K&R C rearrangement license applies to the above expression because addition is
mathematically commutative and associative. To distinguish between regular parentheses and
the actual grouping of an expression, the left and right curly braces designate grouping. The
three possible groupings for the expression are:

i = { {*++p + f()} + g() };

i = { *++p + {f() + g()} };

i = { {*++p + g()} + f() };

All of these are valid given K&R C rules. Moreover, all of these groupings are valid even if the
expression were written instead, for example, in either of these ways:

i = *++p + (f() + g());

i = (g() + *++p) + f();

If this expression is evaluated on an architecture for which either overflows cause an exception,
or addition and subtraction are not inverses across an overflow, these three groupings behave
differently if one of the additions overflows.

For such expressions on these architectures, the only recourse available in K&R C was to split
the expression to force a particular grouping. The following are possible rewrites that
respectively enforce the above three groupings:

i = *++p; i += f(); i += g()

i = f(); i += g(); i += *++p;

i = *++p; i += g(); i += f();

6.10.3 The ISO C Rules
ISO C does not allow operations to be rearranged that are mathematically commutative and
associative, but that are not actually so on the target architecture. Thus, the precedence and
associativity of the ISO C grammar completely describes the grouping for all expressions; all
expressions must be grouped as they are parsed. The expression under consideration is grouped
in this manner:

6.10 Grouping and Evaluation in Expressions

Chapter 6 • Transitioning to ISO C 161

i = { {*++p + f()} + g() };

This code still does not mean that f() must be called before g(), or that p must be incremented
before g() is called.

In ISO C, expressions need not be split to guard against unintended overflows.

6.10.4 The Parentheses
ISO C is often erroneously described as honoring parentheses or evaluating according to
parentheses due to an incomplete understanding or an inaccurate presentation.

Since ISO C expressions simply have the grouping specified by their parsing, parentheses still
only serve as a way of controlling how an expression is parsed; the natural precedence and
associativity of expressions carry exactly the same weight as parentheses.

The above expression could have been written as:

i = (((*(++p)) + f()) + g());

with no different effect on its grouping or evaluation.

6.10.5 The As If Rule
There were several reasons for the K&R C rearrangement rules:
■ The rearrangements provide many more opportunities for optimizations, such as

compile-time constant folding.
■ The rearrangements do not change the result of integral-typed expressions on most

machines.
■ Some of the operations are both mathematically and computationally commutative and

associative on all machines.

The ISO C Committee eventually became convinced that the rearrangement rules were
intended to be an instance of the as if rule when applied to the described target architectures.
ISO C’s as if rule is a general license that permits an implementation to deviate arbitrarily from
the abstract machine description as long as the deviations do not change the behavior of a valid
C program.

Thus, all the binary bitwise operators (other than shifting) are allowed to be rearranged on any
machine because there is no way to notice such regroupings. On typical two’s-complement
machines in which overflow wraps around, integer expressions involving multiplication or
addition can be rearranged for the same reason.

Therefore, this change in C does not have a significant impact on most C programmers.

6.10 Grouping and Evaluation in Expressions

Sun Studio 12: C User's Guide •162

6.11 Incomplete Types
The ISO C standard introduced the term “incomplete type” to formalize a fundamental, yet
misunderstood, portion of C, implicit from its beginnings. This section describes incomplete
types, where they are permitted, and why they are useful.

6.11.1 Types
ISO separates C’s types into three distinct sets: function, object, and incomplete. Function types
are obvious; object types cover everything else, except when the size of the object is not known.
The Standard uses the term “object type” to specify that the designated object must have a
known size, but it is important to know that incomplete types other than void also refer to an
object.

There are only three variations of incomplete types: void, arrays of unspecified length, and
structures and unions with unspecified content. The type void differs from the other two in that
it is an incomplete type that cannot be completed, and it serves as a special function return and
parameter type.

6.11.2 Completing Incomplete Types
An array type is completed by specifying the array size in a following declaration in the same
scope that denotes the same object. When an array without a size is declared and initialized in
the same declaration, the array has an incomplete type only between the end of its declarator
and the end of its initializer.

An incomplete structure or union type is completed by specifying the content in a following
declaration in the same scope for the same tag.

6.11.3 Declarations
Certain declarations can use incomplete types, but others require complete object types. Those
declarations that require object types are array elements, members of structures or unions, and
objects local to a function. All other declarations permit incomplete types. In particular, the
following constructs are permitted:

■ Pointers to incomplete types
■ Functions returning incomplete types
■ Incomplete function parameter types
■ typedef names for incomplete types

6.11 Incomplete Types

Chapter 6 • Transitioning to ISO C 163

The function return and parameter types are special. Except for void, an incomplete type used
in such a manner must be completed by the time the function is defined or called. A return type
of void specifies a function that returns no value, and a single parameter type of void specifies a
function that accepts no arguments.

Since array and function parameter types are rewritten to be pointer types, a seemingly
incomplete array parameter type is not actually incomplete. The typical declaration of main’s
argv, namely, char *argv[], as an unspecified length array of character pointers, is rewritten to
be a pointer to character pointers.

6.11.4 Expressions
Most expression operators require complete object types. The only three exceptions are the
unary & operator, the first operand of the comma operator, and the second and third operands
of the ?: operator. Most operators that accept pointer operands also permit pointers to
incomplete types, unless pointer arithmetic is required. The list includes the unary * operator.
For example, given:

void *p

&*p is a valid subexpression that makes use of this.

6.11.5 Justification
Why are incomplete types necessary? Ignoring void, there is only one feature provided by
incomplete types that C has no other way to handle, and that has to do with forward references
to structures and unions. If one has two structures that need pointers to each other, the only way
to do so is with incomplete types:

struct a { struct b *bp; };

struct b { struct a *ap; };

All strongly typed programming languages that have some form of pointer and heterogeneous
data types provide some method of handling this case.

6.11.6 Examples
Defining typedef names for incomplete structure and union types is frequently useful. If you
have a complicated bunch of data structures that contain many pointers to each other, having a
list of typedefs to the structures up front, possibly in a central header, can simplify the
declarations.

6.11 Incomplete Types

Sun Studio 12: C User's Guide •164

typedef struct item_tag Item;

typedef union note_tag Note;

typedef struct list_tag List;

. . .

struct item_tag { . . . };

. . .

struct list_tag {

struct list_tag {

};

Moreover, for those structures and unions whose contents should not be available to the rest of
the program, a header can declare the tag without the content. Other parts of the program can
use pointers to the incomplete structure or union without any problems, unless they attempt to
use any of its members.

A frequently used incomplete type is an external array of unspecified length. Generally, it is not
necessary to know the extent of an array to make use of its contents.

6.12 Compatible and Composite Types
With K&R C, and even more so with ISO C, it is possible for two declarations that refer to the
same entity to be other than identical. The term “compatible type” is used in ISO C to denote
those types that are “close enough”. This section describes compatible types as well as
“composite types”—the result of combining two compatible types.

6.12.1 Multiple Declarations
If a C program were only allowed to declare each object or function once, there would be no
need for compatible types. Linkage, which allows two or more declarations to refer to the same
entity, function prototypes, and separate compilation all need such a capability. Separate
translation units (source files) have different rules for type compatibility from within a single
translation unit.

6.12.2 Separate Compilation Compatibility
Since each compilation probably looks at different source files, most of the rules for compatible
types across separate compiles are structural in nature:

■ Matching scalar (integral, floating, and pointer) types must be compatible, as if they were in
the same source file.

■ Matching structures, unions, and enums must have the same number of members. Each
matching member must have a compatible type (in the separate compilation sense),
including bit-field widths.

6.12 Compatible and Composite Types

Chapter 6 • Transitioning to ISO C 165

■ Matching structures must have the members in the same order. The order of union and
enum members does not matter.

■ Matching enum members must have the same value.
An additional requirement is that the names of members, including the lack of names for
unnamed members, match for structures, unions, and enums, but not necessarily their
respective tags.

6.12.3 Single Compilation Compatibility
When two declarations in the same scope describe the same object or function, the two
declarations must specify compatible types. These two types are then combined into a single
composite type that is compatible with the first two. More about composite types later.

The compatible types are defined recursively. At the bottom are type specifier keywords. These
are the rules that say that unsigned short is the same as unsigned short int, and that a type
without type specifiers is the same as one with int. All other types are compatible only if the
types from which they are derived are compatible. For example, two qualified types are
compatible if the qualifiers, const and volatile, are identical, and the unqualified base types
are compatible.

6.12.4 Compatible Pointer Types
For two pointer types to be compatible, the types they point to must be compatible and the two
pointers must be identically qualified. Recall that the qualifiers for a pointer are specified after
the *, so that these two declarations

int *const cpi;

int *volatile vpi;

declare two differently qualified pointers to the same type, int.

6.12.5 Compatible Array Types
For two array types to be compatible, their element types must be compatible. If both array
types have a specified size, they must match, that is, an incomplete array type (see “6.11
Incomplete Types” on page 163) is compatible both with another incomplete array type and an
array type with a specified size.

6.12.6 Compatible Function Types
To make functions compatible, follow these rules:

6.12 Compatible and Composite Types

Sun Studio 12: C User's Guide •166

■ For two function types to be compatible, their return types must be compatible. If either or
both function types have prototypes, the rules are more complicated.

■ For two function types with prototypes to be compatible, they also must have the same
number of parameters, including use of the ellipsis (…) notation, and the corresponding
parameters must be parameter-compatible.

■ For an old-style function definition to be compatible with a function type with a prototype,
the prototype parameters must not end with an ellipsis (…). Each of the prototype
parameters must be parameter-compatible with the corresponding old-style parameter,
after application of the default argument promotions.

■ For an old-style function declaration (not a definition) to be compatible with a function type
with a prototype, the prototype parameters must not end with an ellipsis (…). All of the
prototype parameters must have types that would be unaffected by the default argument
promotions.

■ For two types to be parameter-compatible, the types must be compatible after the top-level
qualifiers, if any, have been removed, and after a function or array type has been converted
to the appropriate pointer type.

6.12.7 Special Cases
signed int behaves the same as int, except possibly for bit-fields, in which a plain int may
denote an unsigned-behaving quantity.

Another interesting note is that each enumeration type must be compatible with some integral
type. For portable programs, this means that enumeration types are separate types. In general,
the ISO C standard views them in that manner.

6.12.8 Composite Types
The construction of a composite type from two compatible types is also recursively defined. The
ways compatible types can differ from each other are due either to incomplete arrays or to
old-style function types. As such, the simplest description of the composite type is that it is the
type compatible with both of the original types, including every available array size and every
available parameter list from the original types.

6.12 Compatible and Composite Types

Chapter 6 • Transitioning to ISO C 167

168

Converting Applications for a 64-Bit
Environment

This chapter provides the information you need for writing code for the 32 bit or the 64-bit
compilation environment.

Once you try to write or modify code for both the 32-bit and 64-bit compilation environments,
you face two basic issues:
■ Data type consistency between the different data-type models
■ Interaction between the applications using different data-type models

Maintaining a single code-source with as few #ifdefs as possible is usually better than
maintaining multiple source trees. Therefore, this chapter provides guidelines for writing code
that works correctly in both 32-bit and 64-bit compilation environments. In some cases, the
conversion of current code requires only a recompilation and relinking with the 64-bit libraries.
However, for those cases where code changes are required, this chapter discusses the tools and
strategies that make conversion easier.

7.1 Overview of the Data Model Differences
The biggest difference between the 32-bit and the 64-bit compilation environments is the
change in data-type models.

The C data-type model for 32-bit applications is the ILP32 model, so named because integers,
longs, and pointers are 32-bit data types. The LP64 data model, so named because longs and
pointers grow to 64-bits, is the creation of a consortium of companies across the industry. The
remaining C types, int, long long, short, and char are the same in both data-type models.

Regardless of the data-type model, the standard relationship between C integral types holds
true:

sizeof (char) <= sizeof (short) <= sizeof (int) <= sizeof (long)

The following table lists the basic C data types and their corresponding sizes in bits for both the
ILP32 and LP64 data models.

7C H A P T E R 7

169

TABLE 7–1 Data Type Size for ILP32 and LP64

C Data Type LP32 LP64

char 8 8

short 16 16

int 32 32

long 32 64

long long 64 64

pointer 32 64

enum 32 32

float 32 32

double 64 64

long double 128 128

It is not unusual for current 32-bit applications to assume that integers, pointers, and longs are
the same size. Because the size of longs and pointers change in the LP64 data model, you need to
be aware that this change alone can cause many ILP32 to LP64 conversion problems.

In addition, it becomes very important to examine declarations and casts; how expressions are
evaluated can be affected when the types change. The effects of standard C conversion rules are
influenced by the change in data-type sizes. To adequately show what you intend, you need to
explicitly declare the types of constants. You can also use casts in expressions to make certain
that the expression is evaluated the way you intend. This is particularly true in the case of sign
extension, where explicit casting is essential for demonstrating intent.

7.2 Implementing Single Source Code
The following sections describe some of the available resources that you can use to write
single-source code that supports 32-bit and 64-bit compilation.

7.2.1 Derived Types
Use the system derived types to make code safe for both the 32-bit and the 64-bit compilation
environment. In general, it is good programming practice to use derived types to allow for
change. When you use derived data-types, only the system derived types need to change due to
data model changes, or due to a port.

The system include files <sys/types.h> and <inttypes.h> contain constants, macros, and
derived types that are helpful in making applications 32-bit and 64-bit safe.

7.2 Implementing Single Source Code

Sun Studio 12: C User's Guide •170

7.2.1.1 <sys/types.h>

Include <sys/types.h> in an application source file to gain access to the definition of _LP64
and _ILP32. This header also contains a number of basic derived types that should be used
whenever appropriate. In particular, the following are of special interest:

■ clock_t represents the system times in clock ticks.
■ dev_t is used for device numbers.
■ off_t is used for file sizes and offsets.
■ ptrdiff_t is the signed integral type for the result of subtracting two pointers.
■ size_t reflects the size, in bytes, of objects in memory.
■ ssize_t is used by functions that return a count of bytes or an error indication.
■ time_t counts time in seconds.

All of these types remain 32-bit quantities in the ILP32 compilation environment and grow to
64-bit quantities in the LP64 compilation environment.

7.2.1.2 <inttypes.h>

The include file <inttypes.h> provides constants, macros, and derived types that help you
make your code compatible with explicitly sized data items, independent of the compilation
environment. It contains mechanisms for manipulating 8-bit, 16-bit, 32-bit, and 64-bit objects.
The file is part of the new 1999 ISO/IEC C standard and the contents of the file track the
proposals leading to its inclusion in the 1999 ISO/IEC C standard. The file will soon be updated
to fully conform with the 1999 ISO/IEC C standard. The following is a discussion of the basic
features provided by <inttypes.h>:

■ Fixed-width integer types.
■ Helpful types such as uintptr_t
■ Constant macros
■ Limits
■ Format string macros

The following sections provide more information about the basic features of <inttypes.h>.

Fixed-Width Integer Types

The fixed-width integer types that <inttypes.h> provides, include signed integer types, such as
int8_t, int16_t, int32_t, int64_t, and unsigned integer types, such as uint8_t, uint16_t,
uint32_t, and uint64_t.

Derived types defined as the smallest integer types that can hold the specified number of bits
include int_least8_t,…, int_least64_t, uint_least8_t,…, uint_least64_t.

7.2 Implementing Single Source Code

Chapter 7 • Converting Applications for a 64-Bit Environment 171

It is safe to use an int or unsigned int for such operations as loop counters and file descriptors; it
is also safe to use a long for an array index. However, do not use these fixed-width types
indiscriminately. Use fixed-width types for explicit binary representations of the following:

■ On-disk data
■ Over the data wire
■ Hardware registers
■ Binary interface specifications
■ Binary data structures

Helpful Types Such as unintptr_t

The <inttypes.h> file includes signed and unsigned integer types large enough to hold a
pointer. These are given as intptr_t and uintptr_t. In addition, <inttypes.h> provides
intmax_t and uintmax_t, which are the longest (in bits) signed and unsigned integer types
available.

Use the uintptr_t type as the integral type for pointers instead of a fundamental type such as
unsigned long. Even though an unsigned long is the same size as a pointer in both the ILP32
and LP64 data models, using uintptr_t means that only the definition of uintptr_t is effected
if the data model changes. This makes your code portable to many other systems. It is also a
more clear way to express your intentions in C.

The intptr_t and uintptr_t types are extremely useful for casting pointers when you want to
perform address arithmetic. Use intptr_t and uintptr_t types instead of long or unsigned
long for this purpose.

Constant Macros

Use the macros INT8_C(c), …, INT64_C(c), UINT8_C(c),…, UINT64_C(c) to specify the size
and sign of a given constant. Basically, these macros place an l, ul, ll, or ull at the end of the
constant, if necessary. For example, INT64_C(1) appends ll to the constant 1 for ILP32 and an l
for LP64.

Use the INTMAX_C(c) and UINTMAX_C(c) macros to make a constant the biggest type. These
macros can be very useful for specifying the type of constants described in “7.3 Converting to
the LP64 Data Type Model” on page 174.

Limits

The limits defined by <inttypes.h> are constants that specify the minimum and maximum
values of various integer types. This includes minimum and maximum values for each of the
fixed-width types such as INT8_MIN,…, INT64_MIN, INT8_MAX,…, INT64_MAX, and their
unsigned counterparts.

7.2 Implementing Single Source Code

Sun Studio 12: C User's Guide •172

The <inttypes.h> file also provides the minimum and maximum for each of the least-sized
types. These include INT_LEAST8_MIN,…, INT_LEAST64_MIN, INT_LEAST8_MAX,…,
INT_LEAST64_MAX, as well as their unsigned counterparts.

Finally, <inttypes.h> defines the minimum and maximum value of the largest supported
integer types. These include INTMAX_MIN and INTMAX_MAX and their corresponding unsigned
versions.

Format String Macros

The <inttypes.h> file also includes the macros that specify the printf(3S) and scanf(3S)

format specifiers. Essentially, these macros prepend the format specifier with an l or ll to
identify the argument as a long or long long, given that the number of bits in the argument is
built into the name of the macro.

There are macros for printf(3S) that print both the smallest and largest integer types in
decimal, octal, unsigned, and hexadecimal formats as the following example shows:

int64_t i;

printf("i =%" PRIx64 "\n", i);

Similarly, there are macros for scanf(3S)that read both the smallest and largest integer types in
decimal, octal, unsigned, and hexadecimal formats.

uint64_t u;

scanf("%" SCNu64 "\n", &u);

Do not use these macros indiscriminately. They are best used in conjunction with the
fixed-width types discussed in “Fixed-Width Integer Types” on page 171.

7.2.2 Tools
The lint program’s -errchk option detects potential 64-bit porting problems. You can also
specify cc -v which directs the compiler to perform additional and more strict semantic checks
than by compiling without -v. The -v option also enables certain lint-like checks on the named
files.

When you enhance code to be 64-bit safe, use the header files present in the Solaris operating
system because these files have the correct definition of the derived types and data structures for
the 64-bit compilation environment.

7.2.2.1 lint

Use lint to check code that is written for both the 32-bit and the 64-bit compilation
environment. Specify the -errchk=longptr64 option to generate LP64 warnings. Also use the

7.2 Implementing Single Source Code

Chapter 7 • Converting Applications for a 64-Bit Environment 173

-errchk=longptr64 flag which checks portability to an environment for which the size of long
integers and pointers is 64 bits and the size of plain integers is 32 bits. The -errchk=longptr64
flag checks assignments of pointer expressions and long integer expressions to plain integers,
even when explicit casts are used.

Use the -errchk=longptr64,signext option to find code where the normal ISO C
value-preserving rules allow the extension of the sign of a signed-integral value in an expression
of unsigned-integral type.

Use the -Xarch=v9 option of lint when you want to check code that you intend to run in the
Solaris 64-bit compilation environment only. Use -Xarch=amd64 when you want to check code
you intend to run in the x86 64-bit environment.

When lint generates warnings, it prints the line number of the offending code, a message that
describes the problem, and whether or not a pointer is involved. The warning message also
indicates the sizes of the involved data types. When you know a pointer is involved and you
know the size of the data types, you can find specific 64-bit problems and avoid the pre-existing
problems between 32-bit and smaller types.

Be aware, however, that even though lint gives warnings about potential 64-bit problems, it
cannot detect all problems. Also, in many cases, code that is intentional and correct for the
application generates a warning.

You can suppress the warning for a given line of code by placing a comment of the form
“NOTE(LINTED(“<optional message”>))” on the previous line. This is useful when you want
lint to ignore certain lines of code such as casts and assignments. Exercise extreme care when
you use the “NOTE(LINTED(“<optional message”>))” comment because it can mask real
problems. When you use NOTE, include #include<note.h>. Refer to the lint man page for
more information.

7.3 Converting to the LP64 Data Type Model
The examples that follow illustrate some of the more common problems you are likely to
encounter when you convert code. Where appropriate, the corresponding lint warnings are
shown.

7.3.1 Integer and Pointer Size Change
Since integers and pointers are the same size in the ILP32 compilation environment, some code
relies on this assumption. Pointers are often cast to int or unsigned int for address arithmetic.
Instead, cast your pointers to long because long and pointers are the same size in both ILP32
and LP64 data-type models. Rather than explicitly using unsigned long, use uintptr_t instead
because it expresses your intent more closely and makes the code more portable, insulating it
against future changes. Consider the following example:

7.3 Converting to the LP64 Data Type Model

Sun Studio 12: C User's Guide •174

char *p;

p = (char *) ((int)p & PAGEOFFSET);

%

warning: conversion of pointer loses bits

Here is the modified version:

char *p;

p = (char *) ((uintptr_t)p & PAGEOFFSET);

7.3.2 Integer and Long Size Change
Because integers and longs are never really distinguished in the ILP32 data-type model, your
existing code probably uses them indiscriminately. Modify any code that uses integers and
longs interchangeably so it conforms to the requirements of both the ILP32 and LP64 data-type
models. While an integer and a long are both 32-bits in the ILP32 data-type model, a long is 64
bits in the LP64 data-type model.

Consider the following example:

int waiting;

long w_io;

long w_swap;

...

waiting = w_io + w_swap;

%

warning: assignment of 64-bit integer to 32-bit integer

Furthermore, large arrays of integers, such as longs or unsigned longs, can cause serious
performance degradation in the LP64 data-type model as compared to arrays of ints or
unsigned ints. Large arrays of longs or unsigned longs can also cause significantly more cache
misses and consume more memory.

Therefore, if int works just as well as long for the application purposes, it’s better to use int
rather than long.

This is also an argument for using arrays of ints instead of arrays of pointers. Some C
applications suffer from serious performance degradation after conversion to the LP64
data-type model because they rely on many, large, arrays of pointers.

7.3.3 Sign Extension
Sign extension is a common problem when you convert to the 64-bit compilation environment
because the type conversion and promotion rules are somewhat obscure. To prevent sign
extension problems, use explicit casting to achieve the intended results.

7.3 Converting to the LP64 Data Type Model

Chapter 7 • Converting Applications for a 64-Bit Environment 175

To understand why sign extension occurs, it helps to understand the conversion rules for ISO
C. The conversion rules that seem to cause the most sign extension problems between the 32-bit
and the 64-bit compilation environment come into effect during the following operations:
■ Integral promotion

You can use a char, short, enumerated type, or bit-field, whether signed or unsigned, in
any expression that calls for an integer.
If an integer can hold all possible values of the original type, the value is converted to an
integer; otherwise, the value is converted to an unsigned integer.

■ Conversion between signed and unsigned integers
When an integer with a negative sign is promoted to an unsigned integer of the same or
larger type, it is first promoted to the signed equivalent of the larger type, then converted to
the unsigned value.

When the following example is compiled as a 64-bit program, the addr variable becomes
sign-extended, even though both addr and a.base are unsigned types.

%cat test.c

struct foo {

unsigned int base:19, rehash:13;

};

main(int argc, char *argv[])

{

struct foo a;

unsigned long addr;

a.base = 0x40000;

addr = a.base << 13; /* Sign extension here! */

printf("addr 0x%lx\n", addr);

addr = (unsigned int)(a.base << 13); /* No sign extension here! */

printf("addr 0x%lx\n", addr);

}

This sign extension occurs because the conversion rules are applied as follows:
■ a.base is converted from an unsigned int to an int because of the integral promotion rule.

Thus, the expression a.base << 13 is of type int, but no sign extension has yet occurred.
■ The expression a.base << 13 is of type int, but it is converted to a long and then to an

unsigned long before being assigned to addr, because of signed and unsigned integer
promotion rules. The sign extension occurs when it is converted from an int to a long.

% cc -o test64 -xarch=v9 test.c

% ./test64

addr 0xffffffff80000000

7.3 Converting to the LP64 Data Type Model

Sun Studio 12: C User's Guide •176

addr 0x80000000

%

When this same example is compiled as a 32-bit program it does not display any sign extension:

cc -o test test.c

%test

addr 0x80000000

addr 0x80000000

For a more detailed discussion of the conversion rules, refer to the ISO C standard. Also
included in this standard are useful rules for ordinary arithmetic conversions and integer
constants.

7.3.4 Pointer Arithmetic Instead of Integers
In general, using pointer arithmetic works better than integers because pointer arithmetic is
independent of the data model, whereas integers might not be. Also, you can usually simplify
your code by using pointer arithmetic. Consider the following example:

int *end;

int *p;

p = malloc(4 * NUM_ELEMENTS);

end = (int *)((unsigned int)p + 4 * NUM_ELEMENTS);

%

warning: conversion of pointer loses bits

Here is the modified version:

int *end;

int *p;

p = malloc(sizeof (*p) * NUM_ELEMENTS);

end = p + NUM_ELEMENTS;

7.3.5 Structures
Check the internal data structures in an applications for holes. Use extra padding between fields
in the structure to meet alignment requirements. This extra padding is allocated when long or
pointer fields grow to 64 bits for the LP64 data-type model. In the 64-bit compilation
environment on SPARC platforms, all types of structures are aligned to the size of the largest
member within them. When you repack a structure, follow the simple rule of moving the long
and pointer fields to the beginning of the structure. Consider the following structure definition:

7.3 Converting to the LP64 Data Type Model

Chapter 7 • Converting Applications for a 64-Bit Environment 177

struct bar {

int i;

long j;

int k;

char *p;

}; /* sizeof (struct bar) = 32 */

Here is the same structure with the long and pointer data types defined at the beginning of the
structure:

struct bar {

char *p;

long j;

int i;

int k;

}; /* sizeof (struct bar) = 24 */

7.3.6 Unions
Be sure to check unions because their fields can change size between the ILP32 and the LP64
data-type models.

typedef union {

double _d;

long _l[2];

} llx_t;

Here is the modified version

typedef union {

double _d;

int _l[2];

} llx_t;

7.3.7 Type Constants
A lack of precision can cause the loss of data in some constant expressions. Be explicit when you
specify the data types in your constant expression. Specify the type of each integer constant by
adding some combination of {u,U,l,L}. You can also use casts to specify the type of a constant
expression. Consider the following example:

int i = 32;

long j = 1 << i; /* j will get 0 because RHS is integer */

/* expression */

Here is the modified version:

7.3 Converting to the LP64 Data Type Model

Sun Studio 12: C User's Guide •178

int i = 32;

long j = 1L << i;

7.3.8 Beware of Implicit Declarations
If you use -xc99=none, the C compiler assumes that any function or variable that is used in a
module and not defined or declared externally is an integer. Any longs and pointers used in this
way are truncated by the compiler’s implicit integer declaration. Place the appropriate extern
declaration for the function or variable in a header and not in the C module. Include this header
in any C module that uses the function or variable. If this is a function or variable defined by the
system headers, you still need to include the proper header in the code. Consider the following
example:

int

main(int argc, char *argv[])

{

char *name = getlogin();

printf("login = %s\n", name);

return (0);

}

%

warning: improper pointer/integer combination: op "="
warning: cast to pointer from 32-bit integer

implicitly declared to return int

getlogin printf

The proper headers are now in the modified version

#include <unistd.h>

#include <stdio.h>

int

main(int argc, char *argv[])

{

char *name = getlogin();

(void) printf("login = %s\n", name);

return (0);

}

7.3.9 sizeof() Is an Unsigned long

In the LP64 data-type model, sizeof() has the effective type of an unsigned long. Occasionally,
sizeof() is passed to a function expecting an argument of type int, or assigned or cast to an
integer. In some cases, this truncation causes loss of data.

7.3 Converting to the LP64 Data Type Model

Chapter 7 • Converting Applications for a 64-Bit Environment 179

long a[50];

unsigned char size = sizeof (a);

%

warning: 64-bit constant truncated to 8 bits by assignment

warning: initializer does not fit or is out of range: 0x190

7.3.10 Use Casts to Show Your Intentions
Relational expressions can be tricky because of conversion rules. You should be very explicit
about how you want the expression to be evaluated by adding casts wherever necessary.

7.3.11 Check Format String Conversion Operation
Make sure the format strings for printf(3S), sprintf(3S), scanf(3S), and sscanf(3S) can
accommodate long or pointer arguments. For pointer arguments, the conversion operation
given in the format string should be %p to work in both the 32-bit and 64-bit compilation
environments.

char *buf;

struct dev_info *devi;

...

(void) sprintf(buf, "di%x", (void *)devi);

%

warning: function argument (number) type inconsistent with format

sprintf (arg 3) void *: (format) int

Here is the modified version

char *buf;

struct dev_info *devi;

...

(void) sprintf(buf, ”di%p", (void *)devi);

For long arguments, the long size specification, l, should be prepended to the conversion
operation character in the format string. Furthermore, check to be sure that the storage pointed
to by buf is large enough to contain 16 digits.

size_t nbytes;

u_long align, addr, raddr, alloc;

printf("kalloca:%d%%%d from heap got%x.%x returns%x\n",
nbytes, align, (int)raddr, (int)(raddr + alloc), (int)addr);

%

7.3 Converting to the LP64 Data Type Model

Sun Studio 12: C User's Guide •180

warning: cast of 64-bit integer to 32-bit integer

warning: cast of 64-bit integer to 32-bit integer

warning: cast of 64-bit integer to 32-bit integer

Here is the modified version

size_t nbytes;

u_long align, addr, raddr, alloc;

printf("kalloca:%lu%%%lu from heap got%lx.%lx returns%lx\n",
nbytes, align, raddr, raddr + alloc, addr);

7.4 Other Considerations
The remaining guidelines highlight common problems encountered when converting an
application to a full 64-bit program.

7.4.1 Derived Types That Have Grown in Size
A number of derived types have changed to now represent 64-bit quantities in the 64-bit
application compilation environment. This change does not affect 32-bit applications; however,
any 64-bit applications that consume or export data described by these types need to be
reevaluated. An example of this is in applications that directly manipulate the utmp(4) or
utmpx(4) files. For correct operation in the 64-bit application environment, do not attempt to
directly access these files. Instead, use the getutxent(3C) and related family of functions.

7.4.2 Check for Side Effects of Changes
Be aware that a type change in one area can result in an unexpected 64-bit conversion in
another area. For example, check all the callers of a function that previously returned an int

and now returns an ssize_t.

7.4.3 Check Whether Literal Uses of long Still Make Sense
A variable that is defined as a long is 32 bits in the ILP32 data-type model and 64 bits in the
LP64 data-type model. Where it is possible, avoid problems by redefining the variable and use a
more portable derived type.

Related to this, a number of derived types have changed under the LP64 data-type model. For
example, pid_t remains a long in the 32-bit environment, but under the 64-bit environment, a
pid_t is an int.

7.4 Other Considerations

Chapter 7 • Converting Applications for a 64-Bit Environment 181

7.4.4 Use #ifdef for Explicit 32-bit Versus 64-bit Prototypes
In some cases, specific 32-bit and 64-bit versions of an interface are unavoidable. You can
distinguish these by specifying the _LP64 or _ILP32 feature test macros in the headers.
Similarly, code that runs in 32-bit and 64-bit environments needs to utilize the appropriate
#ifdefs, depending on the compilation mode.

7.4.5 Calling Convention Changes
When you pass structures by value and compile the code for a 64-bit environment, the structure
is passed in registers rather than as a pointer to a copy if it is small enough. This can cause
problems if you try to pass structures between C code and handwritten assembly code.

Floating point parameters work in a similar fashion; some floating point values passed by value
are passed in floating point registers.

7.4.6 Algorithm Changes
After your code is safe for the 64-bit environment, review your code again to verify that the
algorithms and data structures still make sense. The data types are larger, so data structures
might use more space. The performance of your code might change as well. Given these
concerns, you might need to modify your code appropriately.

7.5 Checklist for Getting Started
Use the following checklist to help you convert your code to 64-bit.

■ Review all data structures and interfaces to verify that these are still valid in the 64-bit
environment.

■ Include <inttypes.h> in your code to pull in the _ILP32 or _LP64 definitions as well as
many basic derived types. Systems programs may wish to include <sys/types.h>(or at a
minimum, <sys/isa_defs.h>) to obtain the definitions of _ILP32 or _LP64.

■ Move function prototypes and external declarations with non-local scope to headers and
include these headers in your code.

■ Run lint using the -errchk=longptr64 and signext options. Also, specify -D__sparcv9

for applications intended for SPARC architectures or specify -Xarch=amd64 for
applications intended for x86 architectures. Review each warning individually. Keep in
mind that not all warnings require a change to the code. Depending on the changes, run lint
again in both 32-bit and 64-bit modes.

■ Compile code as both 32-bit and 64-bit, unless the application is being provided only as
64-bit.

7.5 Checklist for Getting Started

Sun Studio 12: C User's Guide •182

■ Test the application by executing the 32-bit version on the 32-bit operating system, and the
64-bit version on the 64-bit operating system. You can also test the 32-bit version on the
64-bit operating system.

7.5 Checklist for Getting Started

Chapter 7 • Converting Applications for a 64-Bit Environment 183

184

cscope: Interactively Examining a C Program

cscope is an interactive program that locates specified elements of code in C, lex, or yacc
source files. With cscope, you can search and edit your source files more efficiently than you
could with a typical editor. That’s because cscope supports function calls—when a function is
being called, when it is doing the calling—as well as C language identifiers and keywords.

This chapter is a tutorial on the cscope browser provided with this release.

Note – The cscope program has not yet been updated to understand codes written for the 1999
ISO/IEC C standard. For example, it does not yet recognize the new keywords introduced in the
1999 ISO/IEC C standard.

8.1 The cscopeProcess
When cscope is called for a set of C, lex, or yacc source files, it builds a symbol cross-reference
table for the functions, function calls, macros, variables, and preprocessor symbols in those
files. You can then query that table about the locations of symbols you specify. First, it presents a
menu and asks you to choose the type of search you would like to have performed. You may, for
instance, want cscope to find all the functions that call a specified function.

When cscope has completed this search, it prints a list. Each list entry contains the name of the
file, the number of the line, and the text of the line in which cscope has found the specified code.
In our case, the list also includes the names of the functions that call the specified function. You
now have the option of requesting another search or examining one of the listed lines with the
editor. If you choose the latter, cscope invokes the editor for the file in which the line appears,
with the cursor on that line. You can now view the code in context and, if you wish, edit the file
as any other file. You can then return to the menu from the editor to request a new search.

8C H A P T E R 8

185

Because the procedure you follow depends on the task at hand, there is no single set of
instructions for using cscope. For an extended example of its use, review the cscope session
described in the next section. It shows how you can locate a bug in a program without learning
all the code.

8.2 Basic Use
Suppose you are given responsibility for maintaining the program prog. You are told that an
error message, out of storage, sometimes appears just as the program starts up. Now you want
to use cscope to locate the parts of the code that are generating the message. Here is how you do
it.

8.2.1 Step 1: Set Up the Environment
cscope is a screen-oriented tool that can only be used on terminals listed in the Terminal
Information Utilities (terminfo) database. Be sure you have set the TERM environment variable
to your terminal type so that cscope can verify that it is listed in the terminfo database. If you
have not done so, assign a value to TERM and export it to the shell as follows:

In a Bourne shell, type:

$ TERM=term_name; export TERM

In a C shell, type:

% setenv TERM term_name

You may now want to assign a value to the EDITOR environment variable. By default, cscope
invokes the vi editor. (The examples in this chapter illustrate vi usage.) If you prefer not to use
vi, set the EDITOR environment variable to the editor of your choice and export EDITOR, as
follows:

In a Bourne shell, type:

$ EDITOR=emacs; export EDITOR

In a C shell, type:

% setenv EDITOR emacs

You may have to write an interface between cscope and your editor. For details, see “8.2.9
Command-Line Syntax for Editors” on page 201.

If you want to use cscope only for browsing (without editing), you can set the VIEWER
environment variable to pg and export VIEWER. cscope will then invoke pg instead of vi.

8.2 Basic Use

Sun Studio 12: C User's Guide •186

An environment variable called VPATH can be set to specify directories to be searched for source
files. See “8.2.6 View Paths” on page 196.

8.2.2 Step 2: Invoke the cscopeProgram
By default, cscope builds a symbol cross-reference table for all the C, lex, and yacc source files
in the current directory, and for any included header files in the current directory or the
standard place. So, if all the source files for the program to be browsed are in the current
directory, and if its header files are there or in the standard place, invoke cscope without
arguments:

% cscope

To browse through selected source files, invoke cscope with the names of those files as
arguments:

% cscope file1.c file2.c file3.h

For other ways to invoke cscope, see “8.2.5 Command-Line Options” on page 194.

cscope builds the symbol cross-reference table the first time it is used on the source files for the
program to be browsed. By default, the table is stored in the file cscope.out in the current
directory. On a subsequent invocation, cscope rebuilds the cross-reference only if a source file
has been modified or the list of source files is different. When the cross-reference is rebuilt, the
data for the unchanged files is copied from the old cross-reference, which makes rebuilding
faster than the initial build, and reduces startup time for subsequent invocations.

8.2.3 Step 3: Locate the Code
Now let’s return to the task we undertook at the beginning of this section: to identify the
problem that is causing the error message out of storage to be printed. You have invoked
cscope, the cross-reference table has been built. The cscope menu of tasks appears on the
screen.

The cscope Menu of Tasks:

% cscope

cscope Press the ? key for help

Find this C symbol:

Find this global definition:

Find functions called by this function:

8.2 Basic Use

Chapter 8 • cscope: Interactively Examining a C Program 187

Find functions calling this function:

Find this text string:

Change this text string:

Find this egrep pattern:

Find this file:

Find files #including this file:

Press the Return key to move the cursor down the screen (with wraparound at the bottom of the
display), and ^p (Control-p) to move the cursor up; or use the up (ua) and down (da) arrow
keys. You can manipulate the menu and perform other tasks with the following single-key
commands:

TABLE 8–1 cscopeMenu Manipulation Commands

Tab Move to the next input field.

Return Move to the next input field.

^n Move to the next input field.

^p Move to the previous input field.

^y Search with the last text typed.

^b Move to the previous input field and search pattern.

^f Move to the next input field and search pattern.

^c Toggle ignore/use letter case when searching. For example, a search for FILE matches file
and File when ignoring the letter case.

^r Rebuild cross-reference.

! Start an interactive shell. Type ^d to return to cscope.

^l Redraw the screen.

? Display the list of commands.

^d Exit cscope.

If the first character of the text for which you are searching matches one of these commands,
you can escape the command by entering a \ (backslash) before the character.

Now move the cursor to the fifth menu item, Find this text string, enter the text out of
storage, and press the Return key.

cscope Function: Requesting a Search for a Text String:

$ cscope

cscope Press the ? key for help

8.2 Basic Use

Sun Studio 12: C User's Guide •188

Find this C symbol

Find this global definition

Find functions called by this function

Find functions calling this function

Find this text string: out of storage

Change this text string

Find this egrep pattern

Find this file

Find files #including this file

Note – Follow the same procedure to perform any other task listed in the menu except the sixth,
Change this text string. Because this task is slightly more complex than the others, there is a
different procedure for performing it. For a description of how to change a text string, see “8.2.8
Examples” on page 197.

cscope searches for the specified text, finds one line that contains it, and reports its finding.

cscope Function: Listing Lines Containing the Text String:

Text string: out of storage

File Line

1 alloc.c 63 (void) fprintf(stderr, "\n%s: out of storage\n", argv0);

Find this C symbol:

Find this global definition:

Find functions called by this function:

Find functions calling this function:

Find this text string:

Change this text string:

Find this egrep pattern:

Find this file:

Find files #including this file:

After cscope shows you the results of a successful search, you have several options. You may
want to change one of the lines or examine the code surrounding it in the editor. Or, if cscope
has found so many lines that a list of them does not fit on the screen at once, you may want to
look at the next part of the list. The following table shows the commands available after cscope
has found the specified text:

8.2 Basic Use

Chapter 8 • cscope: Interactively Examining a C Program 189

TABLE 8–2 Commands for Use After an Initial Search

1 -9 Edit the file referenced by this line. The number you type corresponds to an item in the list of
lines printed by cscope.

Space Display the next set of matching lines.

+ Display the next set of matching lines.

^v Display the next set of matching lines.

— Display the previous set of matching lines.

^e Edit the displayed files in order.

> Append the list of lines being displayed to a file.

| Pipe all lines to a shell command.

Again, if the first character of the text for which you are searching matches one of these
commands, you can escape the command by entering a backslash before the character.

Now examine the code around the newly found line. Enter 1 (the number of the line in the list).
The editor is invoked with the file alloc.c with the cursor at the beginning of line 63 of
alloc.c.

cscope Function: Examining a Line of Code:

{

return(alloctest(realloc(p, (unsigned) size)));

}

/* check for memory allocation failure */

static char *

alloctest(p)

char *p;

{

if (p == NULL) {

(void) fprintf(stderr, "\n%s: out of storage\n", argv0);

exit(1);

}

return(p);

}

~

~

~

~

~

~

8.2 Basic Use

Sun Studio 12: C User's Guide •190

~

"alloc.c" 67 lines, 1283 characters

You can see that the error message is generated when the variable p is NULL. To determine how
an argument passed to alloctest() could have been NULL, you must first identify the functions
that call alloctest().

Exit the editor by using normal quit conventions. You are returned to the menu of tasks. Now
type alloctest after the fourth item, Find functions calling this function.

cscope Function: Requesting a List of Functions That Call alloctest():

Text string: out of storage

File Line

1 alloc.c 63(void)fprintf(stderr,"\n%s: out of storage\n",argv0);

Find this C symbol:

Find this global definition:

Find functions called by this function:

Find functions calling this function: alloctest

Find this text string:

Change this text string:

Find this egrep pattern:

Find this file:

Find files #including this file:

cscope finds and lists three such functions.

cscope Function: Listing Functions That Call alloctest():

Functions calling this function: alloctest

File Function Line

1 alloc.c mymalloc 33 return(alloctest(malloc((unsigned) size)));

2 alloc.c mycalloc 43 return(alloctest(calloc((unsigned) nelem, (unsigned) size)));

3 alloc.c myrealloc 53 return(alloctest(realloc(p, (unsigned) size)));

Find this C symbol:

Find this global definition:

Find functions called by this function:

Find functions calling this function:

Find this text string:

Change this text string:

Find this egrep pattern:

Find this file:

Find files #including this file:

8.2 Basic Use

Chapter 8 • cscope: Interactively Examining a C Program 191

Now you want to know which functions call mymalloc(). cscope finds ten such functions. It
lists nine of them on the screen and instructs you to press the space bar to see the rest of the list.

cscope Function: Listing Functions That Call mymalloc():

Functions calling this function: mymalloc

File Function Line

1 alloc.c stralloc 24 return(strcpy(mymalloc

(strlen(s) + 1), s));

2 crossref.c crossref 47 symbol = (struct symbol *)mymalloc

(msymbols * sizeof(struct symbol));

3 dir.c makevpsrcdirs 63 srcdirs = (char **) mymalloc

(nsrcdirs * sizeof(char*));

4 dir.c addincdir 167 incdirs = (char **)mymalloc

(sizeof(char *));

5 dir.c addincdir 168 incnames = (char **)

mymalloc(sizeof(char *));

6 dir.c addsrcfile 439 p = (struct listitem *) mymalloc

(sizeof(struct listitem));

7 display.c dispinit 87 displine = (int *) mymalloc

(mdisprefs * sizeof(int));

8 history.c addcmd 19 h = (struct cmd *) mymalloc

(sizeof(struct cmd));

9 main.c main 212 s = mymalloc((unsigned)

(strlen(reffile) +strlen(home) + 2));

* 9 more lines - press the space bar to display more *

Find this C symbol:

Find this global definition:

Find functions called by this function:

Find functions calling this function:

Find this text string:

Change this text string:

Find this egrep pattern:

Find this file:

Find files #including this file:

Because you know that the error message out of storage is generated at the beginning of the
program, you can guess that the problem may have occurred in the function dispinit()

(display initialization).

To view dispinit(), the seventh function on the list, type 7.

cscope Function: Viewing dispinit() in the Editor:

void

dispinit()

{

8.2 Basic Use

Sun Studio 12: C User's Guide •192

/* calculate the maximum displayed reference lines */

lastdispline = FLDLINE - 4;

mdisprefs = lastdispline - REFLINE + 1;

if (mdisprefs > 9) {

mdisprefs = 9;

}

/* allocate the displayed line array */

displine = (int *) mymalloc(mdisprefs * sizeof(int));

}

^L/* display a page of the references */

void

display()

{

char file[PATHLEN + 1]; /* file name */

char function[PATLEN + 1];/* function name */

char linenum[NUMLEN + 1]; /* line number */

int screenline; /* screen line number */

int width; /* source line display width */

register int i, j;

"display.c" 622 lines, 14326 characters

mymalloc() failed because it was called either with a very large number or a negative number.
By examining the possible values of FLDLINE and REFLINE, you can see that there are situations
in which the value of mdisprefs is negative, that is, in which you are trying to call mymalloc()
with a negative number.

8.2.4 Step 4: Edit the Code
On a windowing terminal, you may have multiple windows of arbitrary size. The error message
out of storage might have appeared as a result of running prog in a window with too few lines.
In other words, that may have been one of the situations in which mymalloc() was called with a
negative number. Now you want to be sure that when the program aborts in this situation in the
future, it does so after printing the more meaningful error message screen too small. Edit the
function dispinit() as follows.

cscope Function: Correcting the Problem:

void

dispinit()

{

/* calculate the maximum displayed reference lines */

lastdispline = FLDLINE - 4;

mdisprefs = lastdispline - REFLINE + 1;

if (mdisprefs > 9) {

mdisprefs = 9;

8.2 Basic Use

Chapter 8 • cscope: Interactively Examining a C Program 193

}

/* allocate the displayed line array */

displine = (int *) mymalloc(mdisprefs * sizeof(int));

}

^L/* display a page of the references */

void

display()

{

char file[PATHLEN + 1]; /* file name */

char function[PATLEN + 1];/* function name */

char linenum[NUMLEN + 1]; /* line number */

int screenline; /* screen line number */

int width; /* source line display width */

register int i, j;

"display.c" 622 lines, 14326 characters

You have fixed the problem we began investigating at the beginning of this section. Now if prog
is run in a window with too few lines, it does not simply fail with the unedifying error message
out of storage. Instead, it checks the window size and generates a more meaningful error
message before exiting.

8.2.5 Command-Line Options
As noted, cscope builds a symbol cross-reference table for the C, lex, and source files in the
current directory by default. That is,

% cscope

is equivalent to:

% cscope *.[chly]

We have also seen that you can browse through selected source files by invoking cscope with
the names of those files as arguments:

% cscope file1.c file2.c file3.h

cscope provides command-line options with greater flexibility in specifying source files to be
included in the cross-reference. When you invoke cscope with the– s option and any number
of directory names (separated by commas):

% cscope– s dir1,dir2,dir3

8.2 Basic Use

Sun Studio 12: C User's Guide •194

cscope builds a cross-reference for all the source files in the specified directories as well as the
current directory. To browse through all of the source files whose names are listed in file (file
names separated by spaces, tabs, or new-lines), invoke cscope with the– i option and the name
of the file containing the list:

% cscope– i file

If your source files are in a directory tree, use the following commands to browse through all of
them:

% find .– name ’*.[chly]’– print | sort > file
% cscope– i file

If this option is selected, however, cscope ignores any other files appearing on the
command-line.

The– I option can be used for cscope in the same way as the– I option to cc. See “2.14 How to
Specify Include Files” on page 56.

You can specify a cross-reference file other than the default cscope.out by invoking the– f
option. This is useful for keeping separate symbol cross-reference files in the same directory.
You may want to do this if two programs are in the same directory, but do not share all the same
files:

% cscope– f admin.ref admin.c common.c aux.c libs.c

% cscope– f delta.ref delta.c common.c aux.c libs.c

In this example, the source files for two programs, admin and delta, are in the same directory,
but the programs consist of different groups of files. By specifying different symbol
cross-reference files when you invoke cscope for each set of source files, the cross-reference
information for the two programs is kept separate.

You can use the– pn option to specify that cscope display the path name, or part of the path
name, of a file when it lists the results of a search. The number you give to– p stands for the last
n elements of the path name you want to be displayed. The default is 1, the name of the file itself.
So if your current directory is home/common, the command:

% cscope– p2

causes cscope to display common/file1.c, common/file2.c, and so forth when it lists the
results of a search.

If the program you want to browse contains a large number of source files, you can use the– b
option, so that cscope stops after it has built a cross-reference; cscope does not display a menu
of tasks. When you use cscope– b in a pipeline with the batch(1) command, cscope builds the
cross-reference in the background:

% echo ’cscope -b’ | batch

8.2 Basic Use

Chapter 8 • cscope: Interactively Examining a C Program 195

Once the cross-reference is built, and as long as you have not changed a source file or the list of
source files in the meantime, you need only specify:

% cscope

for the cross-reference to be copied and the menu of tasks to be displayed in the normal way.
You can use this sequence of commands when you want to continue working without having to
wait for cscope to finish its initial processing.

The– d option instructs cscope not to update the symbol cross-reference. You can use it to save
time if you are sure that no such changes have been made; cscope does not check the source
files for changes.

Note – Use the – d option with care. If you specify – d under the erroneous impression that your
source files have not been changed, cscope refers to an outdated symbol cross-reference in
responding to your queries.

Check the cscope(1) man page for other command-line options.

8.2.6 View Paths
As we have seen, cscope searches for source files in the current directory by default. When the
environment variable VPATH is set, cscope searches for source files in directories that comprise
your view path. A view path is an ordered list of directories, each of which has the same
directory structure below it.

For example, suppose you are part of a software project. There is an official set of source files in
directories below /fs1/ofc. Each user has a home directory (/usr/you). If you make changes to
the software system, you may have copies of just those files you are changing in
/usr/you/src/cmd/prog1. The official versions of the entire program can be found in the
directory /fs1/ofc/src/cmd/prog1.

Suppose you use cscope to browse through the three files that comprise prog1, namely, f1.c,
f2.c, and f3.c. You would set VPATH to /usr/you and /fs1/ofc and export it, as in:

In a Bourne shell, type:

$ VPATH=/usr/you:/fs1/ofc; export VPATH

In a C shell, type:

% setenv VPATH /usr/you:/fs1/ofc

You then make your current directory /usr/you/src/cmd/prog1, and invoke cscope:

8.2 Basic Use

Sun Studio 12: C User's Guide •196

% cscope

The program locates all the files in the view path. In case duplicates are found, cscope uses the
file whose parent directory appears earlier in VPATH. Thus, if f2.c is in your directory, and all
three files are in the official directory, cscope examines f2.c from your directory, and f1.c and
f3.c from the official directory.

The first directory in VPATH must be a prefix of the directory you will be working in, usually
$HOME. Each colon-separated directory in VPATH must be absolute: it should begin at /.

8.2.7 cscope and Editor Call Stacks
cscope and editor calls can be stacked. That is, when cscope puts you in the editor to view a
reference to a symbol and there is another reference of interest, you can invoke cscope again
from within the editor to view the second reference without exiting the current invocation of
either cscope or the editor. You can then back up by exiting the most recent invocation with the
appropriate cscope and editor commands.

8.2.8 Examples
This section presents examples of how cscope can be used to perform three tasks: changing a
constant to a preprocessor symbol, adding an argument to a function, and changing the value of
a variable. The first example demonstrates the procedure for changing a text string, which
differs slightly from the other tasks on the cscope menu. That is, once you have entered the text
string to be changed, cscope prompts you for the new text, displays the lines containing the old
text, and waits for you to specify which of these lines you want it to change.

8.2.8.1 Changing a Constant to a Preprocessor Symbol
Suppose you want to change a constant, 100, to a preprocessor symbol, MAXSIZE. Select the sixth
menu item, Change this text string, and enter \100. The 1 must be escaped with a backslash
because it has a special meaning (item 1 on the menu) to cscope. Now press Return. cscope
prompts you for the new text string. Type MAXSIZE.

cscope Function: Changing a Text String:

cscope Press the ? key for help

Find this C symbol:

Find this global definition:

Find functions called by this function:

Find functions calling this function:

Find this text string:

8.2 Basic Use

Chapter 8 • cscope: Interactively Examining a C Program 197

Change this text string: \100

Find this egrep pattern:

Find this file:

Find files #including this file:

To: MAXSIZE

cscope displays the lines containing the specified text string, and waits for you to select those in
which you want the text to be changed.

cscope Function: Prompting for Lines to be Changed:

cscope Press the ? key for help

Find this C symbol:

Find this global definition:

Find functions called by this function:

Find functions calling this function:

Find this text string:

Change this text string: \100

Find this egrep pattern:

Find this file:

Find files #including this file:

To: MAXSIZE

You know that the constant 100 in lines 1, 2, and 3 of the list (lines 4, 26, and 8 of the listed
source files) should be changed to MAXSIZE. You also know that 0100 in read.c and 100.0 in
err.c (lines 4 and 5 of the list) should not be changed. You select the lines you want changed
with the following single-key commands:

TABLE 8–3 Commands for Selecting Lines to Be Changed

1-9 Mark or unmark the line to be changed.

* Mark or unmark all displayed lines to be changed.

Space Display the next set of lines.

+ Display the next set of lines.

– Display the previous set of lines.

a Mark all lines to be changed.

^d Change the marked lines and exit.

Esc Exit without changing the marked lines.

8.2 Basic Use

Sun Studio 12: C User's Guide •198

In this case, enter 1, 2, and 3. The numbers you type are not printed on the screen. Instead,
cscope marks each list item you want to be changed by printing a > (greater than) symbol after
its line number in the list.

cscope Function: Marking Lines to be Changed:

Change "100" to "MAXSIZE"

File Line

1>init.c 4 char s[100];

2>init.c 26 for (i = 0; i < 100; i++)

3>find.c 8 if (c < 100) {

4 read.c 12 f = (bb & 0100);

5 err.c 19 p = total/100.0; /* get percentage */

Find this C symbol:

Find this global definition:

Find functions called by this function:

Find functions calling this function:

Find this text string:

Change this text string:

Find this egrep pattern:

Find this file:

Find files #including this file:

Select lines to change (press the ? key for help):

Now type ^d to change the selected lines. cscope displays the lines that have been changed and
prompts you to continue.

cscope Function: Displaying Changed Lines of Text:

Changed lines:

char s[MAXSIZE];

for (i = 0; i < MAXSIZE; i++)

if (c < MAXSIZE) {

Press the RETURN key to continue:

When you press Return in response to this prompt, cscope redraws the screen, restoring it to its
state before you selected the lines to be changed.

The next step is to add the #define for the new symbol MAXSIZE. Because the header file in
which the #define is to appear is not among the files whose lines are displayed, you must escape
to the shell by typing !. The shell prompt appears at the bottom of the screen. Then enter the
editor and add the #define.

cscope Function: Exiting to the Shell:

8.2 Basic Use

Chapter 8 • cscope: Interactively Examining a C Program 199

Text string: 100

File Line

1 init.c 4 char s[100];

2 init.c 26 for (i = 0; i < 100; i++)

3 find.c 8 if (c < 100) {

4 read.c 12 f = (bb & 0100);

5 err.c 19 p = total/100.0; /* get percentage */

Find this C symbol:

Find this global definition:

Find functions called by this function:

Find functions calling this function:

Find this text string:

Change this text string:

Find this egrep pattern:

Find this file:

Find files #including this file:

$ vi defs.h

To resume the cscope session, quit the editor and type ^d to exit the shell.

8.2.8.2 Adding an Argument to a Function
Adding an argument to a function involves two steps: editing the function itself and adding the
new argument to every place in the code where the function is called.

First, edit the function by using the second menu item, Find this global definition. Next,
find out where the function is called. Use the fourth menu item, Find functions calling
this function, to obtain a list of all the functions that call it. With this list, you can either
invoke the editor for each line found by entering the list number of the line individually, or
invoke the editor for all the lines automatically by typing ^e. Using cscope to make this kind of
change ensures that none of the functions you need to edit are overlooked.

8.2.8.3 Changing the Value of a Variable
At times, you may want to see how a proposed change affects your code.

Suppose you want to change the value of a variable or preprocessor symbol. Before doing so, use
the first menu item, Find this C symbol, to obtain a list of references that are affected. Then
use the editor to examine each one. This step helps you predict the overall effects of your
proposed change. Later, you can use cscope in the same way to verify that your changes have
been made.

8.2 Basic Use

Sun Studio 12: C User's Guide •200

8.2.9 Command-Line Syntax for Editors
cscope invokes the vi editor by default. You can override the default setting by assigning your
preferred editor to the EDITOR environment variable and exporting EDITOR, as described in
“8.2.1 Step 1: Set Up the Environment” on page 186. However, cscope expects the editor it uses
to have a command-line syntax of the form:

% editor +linenum filename

as does vi. If the editor you want to use does not have this command-line syntax, you must
write an interface between cscope and the editor.

Suppose you want to use ed. Because ed does not allow specification of a line number on the
command-line, you cannot use it to view or edit files with cscope unless you write a shell script
that contains the following line:

/usr/bin/ed $2

Let’s name the shell script myedit. Now set the value of EDITOR to your shell script and export
EDITOR:

In a Bourne shell, type:

$ EDITOR=myedit; export EDITOR

In a C shell, type:

% setenv EDITOR myedit

When cscope invokes the editor for the list item you have specified, say, line 17 in main.c, it
invokes your shell script with the command-line:

% myedit +17 main.c

myedit then discards the line number ($1) and calls ed correctly with the file name ($2). Of
course, you are not moved automatically to line 17 of the file and must execute the appropriate
ed commands to display and edit the line.

8.3 Unknown Terminal Type Error
If you see the error message:

Sorry, I don’t know how to deal with your "term" terminal

your terminal may not be listed in the Terminal Information Utilities (terminfo) database that
is currently loaded. Make sure you have assigned the correct value to TERM. If the message
reappears, try reloading the Terminal Information Utilities.

8.3 Unknown Terminal Type Error

Chapter 8 • cscope: Interactively Examining a C Program 201

If this message is displayed:

Sorry, I need to know a more specific terminal type than "unknown"

set and export the TERM variable as described in “8.2.1 Step 1: Set Up the Environment” on
page 186.

8.3 Unknown Terminal Type Error

Sun Studio 12: C User's Guide •202

Compiler Options Grouped by Functionality

This chapter summarizes the C compiler options by function. Detailed explanations of the
options and the compiler command-line syntax are provided in Table A–15.

A.1 Options Summarized by Function
In this section, the compiler options are grouped by function to provide a quick reference. For a
detailed description of each option, refer to Table A–15Appendix B, “C Compiler Options
Reference”. Some flags serve more than one purpose and appear more than once.

The options apply to all platforms except as noted; features that are unique to the Solaris
operating system on SPARC based systems are identified as (SPARC), and the features that are
unique to the Solaris operating system on x86 based systems are identified as (x86).

A.1.1 Optimization and Performance Options

TABLE A–1 Optimization and Performance Options Table

Option Action

-fast Selects the optimum combination of compilation options for speed of
executable code.

-fma (SPARC) Enables automatic generation of floating-point, fused,
multiply-add instructions.

-p Prepares the object code to collect data for profiling

-xalias_level (SPARC) Enables the compiler to perform type-based alias analysis and
optimizations.

AA P P E N D I X A

203

TABLE A–1 Optimization and Performance Options Table (Continued)
Option Action

-xbinopt Prepares the binary for later optimizations, transformations and analysis.

-xbuiltin Improve the optimization of code that calls standard library functions.

-xcrossfile Enables optimization and inlining across source files.

-xdepend (SPARC) Analyzes loops for inter-iteration data dependencies and does
loop restructuring.

-xF Enables reordering of data and functions by the linker.

-xhwcprof (SPARC) Enables compiler support for hardware counter-based profiling.

-xinline Tries to inline only those functions specified.

-xinstrument Compiles and instruments your program for analysis by the Thread
Analyzer.

-xipo (SPARC) Performs whole-program optimizations by invoking an
interprocedural analysis component.

-xipo_archive Allows crossfile optimization to include archive (.a) libraries.

-xjobs Sets how many processes the compiler creates.

-xlibmil Inlines some library routines for faster execution.

-xlic_lib=sunperf Links in the Sun-supplied performance libraries.

-xlinkopt Performs link-time optimizations on relocatable object files.

-xlibmopt Enable library of optimized math routines.

-xmaxopt This command limits the level of pragma opt to the level specified.

-xnolibmil Does not inline math library routines.

-xnolibmopt Do not enable library of optimized math routines.

-x0 Optimizes the object code.

-xnorunpath Prevents inclusion of a run-time search-path for shared libraries in the
executable.

-xpagesize Sets the preferred page size for the stack and the heap.

-xpagesize_stack Sets the preferred page size for the stack.

-xpagesize_heap Sets the preferred page size for the heap.

-xpch Reduces compile time for applications whose source files share a common
set of include files.

A.1 Options Summarized by Function

Sun Studio 12: C User's Guide •204

TABLE A–1 Optimization and Performance Options Table (Continued)
Option Action

-xpchstop Can be used in conjunction with -xpch to specify the last include file of the
viable prefix.

-xpentium (x86) Optimizes for the PentiumTM processor.

-xprefetch (SPARC) Enable prefetch instructions.

-xprefetch_level (SPARC) Control the aggressiveness of automatic insertion of prefetch
instructions as set by -xprefetch=auto

-xprefetch_auto_type (SPARC) Controls how indirect prefetches are generated.

-xprofile Collects data for a profile or uses a profile to optimize.

-xprofile_ircache Improves compilation time of -xprofile=use phase by reusing
compilation data saved from the -xprofile=collect phase

-xprofile_pathmap Support for multiple programs or shared libraries in a single profile
directory.

-xrestrict (SPARC) Treats pointer-valued function parameters as restricted pointers.

-xsafe (SPARC) Allows the compiler to assume no memory-based traps occur.

-xspace Does no optimizations or parallelization of loops that increase code size.

-xunroll Suggests to the optimizer to unroll loops n times.

A.1.2 Compile-Time and Link-Time Options
The following table lists the options that must be specified both at link-time and at
compile-time.

TABLE A–2 Compile-Time and Link-Time Options Table

Option Action

-fast Selects the optimum combination of compilation options for speed of
executable code.

-m32|-m64 Specifies the memory model for the compiled binary object.

-mt Macro option that expands to -D_REENTRANT -lthread.

-p Prepares the object code to collect data for profiling with prof(1)

-xarch Specify instruction set architecture.

-xautopar (SPARC) Turns on automatic parallelization for multiple processors.

A.1 Options Summarized by Function

Appendix A • Compiler Options Grouped by Functionality 205

TABLE A–2 Compile-Time and Link-Time Options Table (Continued)
Option Action

-xexplicitpar (SPARC) Generates parallelized code based on specification of #pragma MP
directives.

-xhwcprof (SPARC) Enables compiler support for hardware counter-based profiling.

-xipo (SPARC) Performs whole-program optimizations by invoking an
interprocedural analysis component.

-xlinkopt Performs link-time optimizations on relocatable object files.

-xmemalign (SPARC) Specify maximum assumed memory alignment and behavior of
misaligned data accesses.

-xopenmp (SPARC) Supports the OpenMP interface for explicit parallelization including
a set of source code directives, run-time library routines, and environment
variables

-xpagesize Sets the preferred page size for the stack and the heap.

-xpagesize_stack Sets the preferred page size for the stack.

-xpagesize_heap Sets the preferred page size for the heap.

-xparallel (SPARC) Parallelizes loops both automatically by the compiler and explicitly
specified by the programmer.

-xpg Prepares the object code to collect data for profiling with gprof(1).

-xprofile Collects data for a profile or uses a profile to optimize.

-xsb Generates extra symbol table information for the Source Browser.

-xvector Enable automatic generation of calls to the vector library functions.

A.1.3 Data-Alignment Options

TABLE A–3 Data-Alignment Options Table

Option Action

-xchar_byte_order Produce an integer constant by placing the characters of a multi-character
character-constant in the specified byte order.

-xdepend (SPARC) Analyzes loops for inter-iteration data dependencies and does loop
restructuring.

-xmemalign (SPARC) Specify maximum assumed memory alignment and behavior of
misaligned data accesses.

A.1 Options Summarized by Function

Sun Studio 12: C User's Guide •206

TABLE A–3 Data-Alignment Options Table (Continued)
Option Action

-xopenmp (SPARC) Supports the OpenMP interface for explicit parallelization including
a set of source code directives, run-time library routines, and environment
variables

A.1.4 Numerics and Floating Point Options

TABLE A–4 Numerics and Floating Point Options Table

Option Action

-flteval (x86) Controls floating point evaluation.

-fma (SPARC) Enables automatic generation of floating-point, fused, multiply-add
instructions.

-fnonstd Causes nonstandard initialization of floating-point arithmetic hardware.

-fns (SPARC) Turns on the SPARC nonstandard floating-point mode.

-fprecision (x86) Initializes the rounding-precision mode bits in the Floating-point Control
Word

-fround Sets the IEEE 754 rounding mode that is established at runtime during the
program initialization.

-fsimple Allows the optimizer to make simplifying assumptions concerning floating-point
arithmetic.

-fsingle Causes the compiler to evaluate float expressions as single precision rather than
double precision.

-fstore (x86) Causes the compiler to convert the value of a floating-point expression or
function to the type on the left-hand side of an assignment

-ftrap Sets the IEEE 754 trapping mode in effect at startup.

-nofstore (x86) Does not convert the value of a floating-point expression or function to the
type on the left-hand side of an assignment

-xdepend (SPARC) Analyzes loops for inter-iteration data dependencies and does loop
restructuring.

-xlibmieee Forces IEEE 754 style return values for math routines in exceptional cases.

-xopenmp (SPARC) Supports the OpenMP interface for explicit parallelization including a
set of source code directives, run-time library routines, and environment variables

-xsfpconst Represents unsuffixed floating-point constants as single precision

A.1 Options Summarized by Function

Appendix A • Compiler Options Grouped by Functionality 207

TABLE A–4 Numerics and Floating Point Options Table (Continued)
Option Action

-xvector Enable automatic generation of calls to the vector library functions.

A.1.5 Parallelization Options

TABLE A–5 Parallelization Options Table

Option Action

-mt Macro option that expands to -D_REENTRANT -lthread.

-xautopar (SPARC) Turns on automatic parallelization for multiple processors.

-xcheck (SPARC) Adds a runtime check for stack overflow.

-xdepend (SPARC) Analyzes loops for inter-iteration data dependencies and does loop
restructuring.

-xexplicitpar (SPARC) Generates parallelized code based on specification of #pragma MP
directives.

-xloopinfo (SPARC) Shows which loops are parallelized and which are not.

-xopenmp (SPARC) Supports the OpenMP interface for explicit parallelization including a
set of source code directives, run-time library routines, and environment variables

-xparallel (SPARC) Parallelizes loops both automatically by the compiler and explicitly
specified by the programmer.

-xreduction (SPARC) Turns on reduction recognition during automatic parallelization.

-xrestrict (SPARC) Treats pointer-valued function parameters as restricted pointers.

-xvpara (SPARC) Warns about loops that have #pragma MP directives specified but may not
be properly specified for parallelization.

-xthreadvar (SPARC) Controls the implementation of thread local variables.

-Zll (SPARC) Creates the program database for lock_lint, but does not generate
executable code.

A.1 Options Summarized by Function

Sun Studio 12: C User's Guide •208

A.1.6 Source-Code Options

TABLE A–6 Source-Code Options Table

Option Action

-A Associates name as a predicate with the specified tokens as if by a #assert
preprocessing directive.

-C Prevents the preprocessor from removing comments, except those on the
preprocessing directive lines.

-D Associates name with the specified tokens as if by a #define preprocessing
directive.

-E Runs the source file through the preprocessor only and sends the output to
stdout.

-fd Reports K&R-style function definitions and declarations.

-H Prints to standard error, one per line, the path name of each file included during
the current compilation.

-I Adds directories to the list that is searched for #include files with relative file
names.

-P Runs the source file through the C preprocessor only.

-U Removes any initial definition of the preprocessor symbol name.

-X The -X options specify varying degrees of compliance to the ISO C standard.

-xCC Accepts the C++-style comments.

-xc99 Controls compiler recognition of supported C99 features.

-xchar Helps with migration from systems where char is defined as unsigned.

-xcsi Allows the C compiler to accept source code written in locales that do not conform
to the ISO C source character code requirements

-xM Runs only the preprocessor on the named C programs, requesting that it generate
makefile dependencies and send the result to the standard output

-xM1 Collects dependencies like -xM, but excludes /usr/include files.

-xMD Generates makefile dependencies like -xM but includes compilation.

-xMF Specifies a filename which stores makefile dependency information.

-xMMD Generates makefile dependencies but excludes system headers.

-xP Prints prototypes for all K&R C functions defined in this module

-xpg Prepares the object code to collect data for profiling with gprof(1).

A.1 Options Summarized by Function

Appendix A • Compiler Options Grouped by Functionality 209

TABLE A–6 Source-Code Options Table (Continued)
Option Action

-xsb Generates extra symbol table information for the Source Browser.

-xsbfast Creates the database for the Source Browser.

-xtrigraphs Determines recognition of trigraph sequences.

-xustr Enables recognition of string literals composed of sixteen-bit characters.

A.1.7 Compiled-Code Options

TABLE A–7 Compiled-Code Options Table

Option Action

-c Directs the compiler to suppress linking with ld(1) and to produce a .o file in the
current working directory for each source file

-o Names the output file

-S Directs the compiler to produce an assembly source file but not to assemble the
program.

A.1.8 Compilation-Mode Options

TABLE A–8 Compilation-Mode Options Table

Option Action

-# Turns on verbose mode, which shows how command options expand and shows
each component as it is invoked.

-### Shows each component as it would be invoked, but does not actually execute it.
Also shows how command options expand.

-features Ensures compatibility between old binaries with extern inline functions and new
binaries.

-keeptmp Retains temporary files created during compilation instead of deleting them
automatically.

-V Directs cc to print the name and version ID of each component as the compiler
executes.

-W Passes arguments to C compilation-system components.

-X The -X options specify varying degrees of compliance to the ISO C standard.

A.1 Options Summarized by Function

Sun Studio 12: C User's Guide •210

TABLE A–8 Compilation-Mode Options Table (Continued)
Option Action

-xc99 Controls compiler recognition of supported C99 features.

-xchar Preserves the sign of a char

-xhelp Displays on-line help information.

-xjobs Sets how many processes the compiler creates.

-xpch Reduces compile time for applications whose source files share a common set of
include files.

-xpchstop Can be used in conjunction with -xpch to specify the last include file of the viable
prefix.

-xtemp Sets the directory for temporary files used by cc to dir.

-xtime Reports the time and resources used by each compilation component.

-Y Specifies a new directory for the location of a C compilation-system component.

-YA Changes the default directory searched for components.

-YI Changes the default directory searched for include files.

-YP Changes the default directory for finding library files.

-YS Changes the default directory for startup object files.

A.1.9 Diagnostic Options

TABLE A–9 Diagnostic Options Table

Option Action

-errfmt Prefix error messages with string “error:” for ready distinction from warning
messages.

-errhdr Limits the warnings from header files to a specified group.

-erroff Suppresses compiler warning messages.

-errshort Control how much detail is in the error message produced by the compiler when it
discovers a type mismatch.

-errtags Displays the message tag for each warning message.

-errwarn If the indicated warning message is issued, cc exits with a failure status.

-v Directs the compiler to perform stricter semantic checks and to enable other
lint-like checks.

A.1 Options Summarized by Function

Appendix A • Compiler Options Grouped by Functionality 211

TABLE A–9 Diagnostic Options Table (Continued)
Option Action

-w Suppresses compiler warning messages.

-xe Performs only syntax and semantic checking on the source file, but does not
produce any object or executable code.

-xtransition ”Issues warnings for the differences between K&R C and Sun ISO C.

-xvpara (SPARC) Warns about loops that have #pragma MP directives specified but may not
be properly specified for parallelization.

A.1.10 Debugging Options

TABLE A–10 Debugging Options Table

Option Action

-xcheck Adds a runtime check for stack overflow.

-g Produces additional symbol table information for the debugger.

-s Removes all symbolic debugging information from the output object file.

-xdebugformat Generates debugging information in dwarf format instead of stabs format.

-xpagesize Sets the preferred page size for the stack and the heap.

-xpagesize_stack Sets the preferred page size for the stack.

-xpagesize_heap Sets the preferred page size for the heap.

-xs Disables Auto-Read of object files for dbx.

-xvis (SPARC) Enables compiler recognition of the assembly-language templates
defined in the VIS[tm] instruction set

A.1.11 Linking and Libraries Options

TABLE A–11 Linking and Libraries Options Table

Option Action

-B Specifies whether bindings of libraries for linking are static or dynamic.

-d Specifies dynamic or static linking in the link editor.

A.1 Options Summarized by Function

Sun Studio 12: C User's Guide •212

TABLE A–11 Linking and Libraries Options Table (Continued)
Option Action

-G Passes the option to the link editor to produce a shared object rather than a
dynamically linked executable.

-h Assigns a name to a shared dynamic library as a way to have different versions of a
library.

-i Passes the option to the linker to ignore any LD_LIBRARY_PATH setting.

-L Adds directories to the list that the linker searches for libraries.

-l Links with object library libname.so, or libname.a.

-mc Removes duplicate strings from the .comment section of the object file.

-mr Removes all strings from the .comment section. Can also insert a string in that
section of the object file.

-Q Emits or does not emit identification information to the output file.

-R Passes a colon-separated list of directories used to specify library search directories
to the runtime linker.

-xMerge Merges data segments into text segments.

-xcode Specify code address space.

-xldscope Controls the default scope of variable and function definitions to create faster and
safer shared libraries.

-xnolib Does not link any libraries by default

-xnolibmil Does not inline math library routines.

-xstrconst Inserts string literals into the read-only data section of the text segment instead of
the default data segment.

A.1.12 Target-Platform Options

TABLE A–12 Target-Platform Options Table

Option Action

-m32|-m64 Specifies the memory model for the compiled binary object.

-xarch Specify instruction set architecture.

-xcache Defines the cache properties for use by the optimizer.

-xchip Specifies the target processor for use by the optimizer.

A.1 Options Summarized by Function

Appendix A • Compiler Options Grouped by Functionality 213

TABLE A–12 Target-Platform Options Table (Continued)
Option Action

-xregs (SPARC) Specifies the usage of registers for the generated code.

-xtarget Specifies the target system for instruction set and optimization.

A.1.13 x86-Specific Options

TABLE A–13 x86-Specific Options Table

Option Action

-flteval Controls floating point evaluation.

-fprecision Initializes the rounding-precision mode bits in the Floating-point Control Word

-fstore Causes the compiler to convert the value of a floating-point expression or function
to the type on the left-hand side of an assignment

-nofstore Does not convert the value of a floating-point expression or function to the type on
the left-hand side of an assignment

-xmodel Modifies the form of 64-bit objects for the Solaris x86 platforms

-xpentium Optimizes for the Pentium processor.

A.1.14 Licensing Options

TABLE A–14 Licensing Options Table

Option Action

-xlicinfo Returns information about the licensing system.

A.1.15 Obsolete Options
The following table lists the options that have been deprecated. Note that the compiler may still
accept these options, but may not do so in future releases. Begin using the suggested alternative
option as soon as possible.

A.1 Options Summarized by Function

Sun Studio 12: C User's Guide •214

TABLE A–15 Obsolete Options Table

Option Action

-dalign Use -xmemalign=8s instead.

-KPIC (SPARC) Use -xcode=pic32 instead.

-Kpic (SPARC) Use -xcode=pic13 instead.

-misalign Use -xmemalign=1i instead.

-misalign2 Use -xmemalign=2i instead.

-x386 Use -xchip=generic instead.

-x486 Use -xchip=generic instead.

-xa Use -xprofile=tcov instead.

-xcg Use -O instead to take advantage of the default values for -xarch, -xchip, and
-xcache.

-xnativeconnect Obsolete, there is no alternative option.

-xprefetch=yes Use -xprefetch=auto,explicit instead.

-xprefetch=no Use -xprefetch=no%auto,no%explicit instead.

-xtarget=386 Use -xtarget=generic instead.

-xtarget=486 Use -xtarget=generic instead.

A.1 Options Summarized by Function

Appendix A • Compiler Options Grouped by Functionality 215

216

C Compiler Options Reference

This chapter describes the C compiler options in alphabetical order. See Appendix A,
“Compiler Options Grouped by Functionality” for options grouped by functionality. For
example, Table A–1 lists all the optimization and performance options.

Take note that the C compiler recognizes by default some of the constructs of the 1999 ISO/IEC
C standard. Specifically, the supported features are detailed in Appendix D, “Supported
Features of C99”. Use the -xc99=none command if you want to limit the compiler to the 1990
ISO/IEC C standard.

If you are porting a K&R C program to ISO C, make special note of the section on compatibility
flags, “B.2.63 -X[c|a|t|s]” on page 240. Using them makes the transition to ISO C easier. Also
refer to the discussion on the transition in “5.4 Examples of Memory Reference Constraints” on
page 124.

B.1 Option Syntax
The syntax of the cc command is:

% cc [options] filenames [libraries]...

where:
■ options represents one or more of the options described in Table A–15.
■ filenames represents one or more files used in building the executable program

The C compiler accepts a list of C source files and object files contained in the list of files
specified by filenames. The resulting executable code is placed in a.out, unless the -o
option is used. In this case, the code is placed in the file named by the -o option.
Use the C compiler to compile and link any combination of the following:
■ C source files, with a .c suffix
■ Inline template files, with a .il suffix (only when specified with .c files)

BA P P E N D I X B

217

■ C preprocessed source files, with a .i suffix
■ Object-code files, with .o suffixes
■ Assembler source files, with .s suffixes

After linking, the C compiler places the linked files, now in executable code, into a file
named a.out, or into the file specified by the -o option. When the compiler produces
object code for each .i or .c input file, it always creates an object (.o) file in the current
working directory.

libraries represents any of a number of standard or user-provided libraries containing
functions, macros, and definitions of constants.

See option -YP, dir to change the default directories used for finding libraries. dir is a
colon-separated path list. The default library search order for cc is:

/opt/SUNWspro/prod/lib

/usr/ccs/lib

/usr/lib

cc uses getopt to parse command-line options. Options are treated as a single letter or a single
letter followed by an argument. See getopt(3c).

B.2 The ccOptions
This section describes the cc options, arranged alphabetically. These descriptions are also
available in the man page, cc(1). Use the cc -flags option for a one-line summary of these
descriptions.

Options noted as being unique to one or more platforms are accepted without error and
ignored on all other platforms. For an explanation of the typographic notations used with the
options and arguments, refer to “Typographic Conventions” on page 19.

B.2.1 -#

Turns on verbose mode, showing how command options expand. Shows each component as it
is invoked.

B.2.2 -###

Shows each component as it would be invoked, but does not actually execute it. Also shows how
command options would expand.

B.2 The ccOptions

Sun Studio 12: C User's Guide •218

B.2.3 -Aname[(tokens)]
Associates name as a predicate with the specified tokens as if by a #assert preprocessing
directive. Preassertions:

■ system(unix)

■ machine(sparc) (SPARC)
■ machine(i386) (x86)
■ cpu(sparc) (SPARC)
■ cpu(i386) (x86)

These preassertions are not valid in -Xc mode.

If -A is followed by a dash (-) only, it causes all predefined macros (other than those that begin
with __) and predefined assertions to be forgotten.

B.2.4 -B[static|dynamic]
Specifies whether bindings of libraries for linking are static or dynamic, indicating whether
libraries are non-shared or shared, respectively.

–Bdynamic causes the link editor to look for files named libx.so and then for files named
libx.a when given the -lx option.

–Bstatic causes the link editor to look only for files named libx.a. This option may be
specified multiple times on the command line as a toggle. This option and its argument are
passed to ld(1).

Note – Many system libraries, such as libc, are only available as dynamic libraries in the Solaris
64-bit compilation environment. Therefore, do not use -Bstatic as the last toggle on the
command line.

This option and its argument are passed to the linker.

B.2.5 -C

Prevents the C preprocessor from removing comments, except those on the preprocessing
directive lines.

B.2 The ccOptions

Appendix B • C Compiler Options Reference 219

B.2.6 -c

Directs the C compiler to suppress linking with ld(1) and to produce a .o file for each source
file. You can explicitly name a single object file using the-o option. When the compiler
produces object code for each .i or .c input file, it always creates an object (.o) file in the current
working directory. If you suppress the linking step, you also suppress the removal of the object
files.

B.2.7 -Dname[(arg[,arg])][=expansion]
Define a macro with optional arguments as if the macro is defined by a #define preprocessing
directive. If no =expansion is specified, the compiler assumes 1.

Predefinitions (not valid in-Xc mode):

■ sun

■ unix

■ sparc (SPARC)
■ i386 (x86)

The following predefinitions are valid in all modes.

■ __BUILTIN_VA_ARG_INCR

■ __SUNPRO_C=0x590

■ __SVR4 (SPARC)
■ __SunOS (Solaris Operating System)
■ __SunOS_n_n (Solaris Operating System)
■ __amd64 (x86 with -m64)
■ __gnu__linux (linux)
■ __i386 (x86)
■ __linux (linux)
■ __linux__ (linux)
■ __sparc (SPARC)
■ __sparcv9 (-xarch=v9, v9a, v9b)
■ __sun (Solaris Operating System)
■ __unix

■ __SunOS_n_n (Solaris Operating System) (example: __SunOS_5_9)

The following is predefined in-Xa and-Xt modes only:

■ __RESTRICT

The compiler also predefines the object-like macro __PRAGMA_REDEFINE_EXTNAME to indicate
the pragma will be recognized.

B.2 The ccOptions

Sun Studio 12: C User's Guide •220

B.2.8 -d[y|n]
-dy specifies dynamic linking, which is the default, in the link editor.

-dn specifies static linking in the link editor.

This option and its arguments are passed to ld(1).

Note – This option causes fatal errors if you use it in combination with dynamic libraries. Most
system libraries are only available as dynamic libraries.

B.2.9 -dalign

(SPARC) Obsolete. You should not use this option. Use -xmemalign=8s instead. See “B.2.111
-xmemalign=ab” on page 277 for more information. For a complete list of obsolete options, see
“A.1.15 Obsolete Options” on page 214.

B.2.10 -E

Runs the source file through the preprocessor only and sends the output to stdout. The
preprocessor is built directly into the compiler, except in -Xs mode, where /usr/ccs/lib/cpp
is invoked. Includes the preprocessor line numbering information. See also the– P option.

B.2.11 -errfmt[=[no%]error]
Use this option if you want to prefix the string “error:” to the beginning of error messages so
they are more easily distinguishable from warning messages. The prefix is also attached to
warnings that are converted to errors by -errwarn.

TABLE B–1 The -errfmtFlags

Flag Meaning

error Add the prefix “error:” to all error messages.

no%error Do not add the prefix “error:” to any error messages.

If you do not specify this option, the compiler sets it to -errfmt=no%error. If you specify
-errfmt, but do not supply a value, the compiler sets it to -errfmt=error.

B.2 The ccOptions

Appendix B • C Compiler Options Reference 221

B.2.12 -erroff[=t]
This command suppresses C compiler warning messages and has no effect on error messages.
This option applies to all warning messages whether or not they have been designated by
-errwarn to cause a non-zero exit status.

t is a comma-separated list that consists of one or more of the following: tag, no%tag, %all,
%none. Order is important; for example, %all,no%tag suppresses all warning messages except
tag. The following table lists the -erroff values:

TABLE B–2 The -erroffFlags

Flag Meaning

tag Suppresses the warning message specified by this tag. You can display the tag for a
message by using the -errtags=yes option.

no%tag Enables the warning message specified by this tag

%all Suppresses all warning messages

%none Enables all warning messages (default)

The default is -erroff=%none. Specifying -erroff is equivalent to specifying -erroff=%all.

Only warning messages from the C compiler front-end that display a tag when the -errtags
option is used can be suppressed with the -erroff option. You can achieve finer control over
error message suppression. See “2.8.6 error_messages” on page 43.

B.2.13 -errshort[=i]
Use this option to control how much detail is in the error message produced by the compiler
when it discovers a type mismatch. This option is particularly useful when the compiler
discovers a type mismatch that involves a large aggregate.

i can be one of the following:

TABLE B–3 The -errshortFlags

Flag Meaning

short Error messages are printed in short form with no expansion of types.
Aggregate members are not expanded, neither are function argument and
return types.

B.2 The ccOptions

Sun Studio 12: C User's Guide •222

TABLE B–3 The -errshort Flags (Continued)
Flag Meaning

full Error messages are printed in full verbose form showing the full expansion of
the mismatched types.

tags Error messages are printed with tag names for types which have tag names. If
there is no tag name, the type is shown in expanded form.

If you do not specify -errshort, the compiler sets the option to -errshort=full. If you specify
-errshort, but do not provide a value, the compiler sets the option to -errshort=tags.

This option does not accumulate, it accepts the last value specified on the command line.

B.2.14 -errtags[=a]
Displays the message tag for each warning message of the C compiler front-end that can be
suppressed with the -erroff option or made a fatal error with the -errwarn option. Messages
from the C compiler driver and other components of the C compilation system do not have
error tags, and cannot be suppressed with -erroff and made fatal with -errwarn.

a can be either yes or no. The default is -errtags=no. Specifying -errtags is equivalent to
specifying -errtags=yes.

B.2.15 -errwarn[=t]
Use the -errwarn option to cause the C compiler to exit with a failure status for the given
warning messages.

t is a comma-separated list that consists of one or more of the following: tag, no%tag, %all,
%none. Order is important; for example %all,no%tag causes cc to exit with a fatal status if any
warning except tag is issued.

The warning messages generated by the C compiler change from release to release as the
compiler error checking improves and features are added. Code that compiles using
-errwarn=%all without error may not compile without error in the next release of the
compiler.

Only warning messages from the C compiler front-end that display a tag when the -errtags
option is used can be specified with the -errwarn option to cause the C compiler to exit with a
failure status.

The following table details the -errwarn values:

B.2 The ccOptions

Appendix B • C Compiler Options Reference 223

TABLE B–4 The -errwarnFlags

Flag Meaning

tag Cause cc to exit with a fatal status if the message specified by this tag is issued as a warning
message. Has no effect if tag is not issued.

no%tag Prevent cc from exiting with a fatal status if the message specified by tag is issued only as a
warning message. Has no effect if the message specified by tag is not issued. Use this option to
revert a warning message that was previously specified by this option with tag or %all from
causing cc to exit with a fatal status when issued as a warning message.

%all Cause the compiler to exit with a fatal status if any warning messages are issued. %all can be
followed by no%tag to exempt specific warning messages from this behavior.

%none Prevents any warning message from causing the compiler to exit with a fatal status should any
warning message be issued.

The default is -errwarn=%none. If you specify -errwarn alone, it is equivalent to
-errwarn=%all.

B.2.16 -fast

This option is a macro that can be effectively used as a starting point for tuning an executable
for maximum runtime performance. -fast is a macro that can change from one release of the
compiler to the next and expands to options that are target platform specific. Use the -# option
or -xdryrun to examine the expansion of -fast, and incorporate the appropriate options of
-fast into the ongoing process of tuning the executable.

The expansion of -fast now includes the new -xlibmopt option. This option enables the
compiler to use a library of optimized math routines. For more information, see “B.2.99
-xlibmopt” on page 272.

The -fast option impacts the value of errno. See “2.10 The Value of errno” on page 54 for
more information.

Modules that are compiled with -fast must also be linked with -fast. For a complete list of all
compiler options that must be specified at both compile time and at link time, see “A.1.2
Compile-Time and Link-Time Options” on page 205.

The –fast option is unsuitable for programs intended to run on a different target than the
compilation machine. In such cases, follow -fast with the appropriate -xtarget option. For
example:

cc -fast -xtarget=ultra ...

For C modules that depend on exception handling specified by SUID, follow -fast by
-xnolibmil:

B.2 The ccOptions

Sun Studio 12: C User's Guide •224

% cc -fast -xnolibmil

With -xlibmil, exceptions cannot be noted by setting errno or calling matherr(3m).

The –fast option is unsuitable for programs that require strict conformance to the IEEE 754
Standard.

The following table lists the set of options selected by -fast across platforms.

TABLE B–5 The -fastExpansion Flags

Option SPARC x86

-fns X X

-fsimple=2 X X

-fsingle X X

-nofstore - X

-xalias_level=basic X X

-xbuiltin=%all X X

-xdepend X X

-xlibmil X X

-xlibmopt X -

-xmemalign=8s X -

-xO5 X X

-xprefetch=auto,explicit X -

-xregs=frameptr - X

-xtarget=native X X

Note – Some optimizations make certain assumptions about program behavior. If the program
does not conform to these assumptions, the application may crash or produce incorrect results.
Please refer to the description of the individual options to determine if your program is suitable
for compilation with -fast.

The optimizations performed by these options may alter the behavior of programs from that
defined by the ISO C and IEEE standards. See the description of the specific option for details.

B.2 The ccOptions

Appendix B • C Compiler Options Reference 225

–fast acts like a macro expansion on the command line. Therefore, you can override the
optimization level and code generation option aspects by following -fast with the desired
optimization level or code generation option. Compiling with the -fast -xO4 pair is like
compiling with the -xO2 -xO4 pair. The latter specification takes precedence.

Do not use this option for programs that depend on IEEE standard exception handling; you can
get different numerical results, premature program termination, or unexpected SIGFPE signals.

B.2.17 -fd

Reports K&R-style function definitions and declarations.

B.2.18 -features=[[no%]extinl|%none]
The compiler’s treatment of extern inline functions conforms by default to the behavior
specified by the ISO/IEC 9899:1999 C standard. Compile new codes with
-features=no%extinl to obtain the same treatment of extern inline functions as provided by
versions 5.5, or older, of the C and C++ compilers.

TABLE B–6 The -featuresFlags

Value Meaning

extensions Allows zero-sized struct/union declarations and void functions with return
statements returning a value to work.

extinl Generates extern inline functions as global functions. This is the default,
which conforms with the 1999 C standard.

no%extinl Generates extern inline functions as static functions.

%none The option is disabled.

Old C and C++ objects (created with Sun compilers prior to this release) can be linked with new
C and C++ objects with no change of behavior for the old objects. To get standard conforming
behavior, you must recompile old code with the current compiler.

If you do not specify a setting for -features, the compiler sets it to -features=extinl.

B.2.19 -flags

Prints a brief summary of each available compiler option.

B.2 The ccOptions

Sun Studio 12: C User's Guide •226

B.2.20 -flteval[={any|2}]
(x86) Use this option to control how floating point expression are evaluated.

TABLE B–7 The -flteval Flags

Flag Meaning

2 Floating point expressions are evaluated as long double.

any Floating point expressions are evaluated depending on the combination of the
types of the variables and constants that make up an expression.

If you do not specify -flteval, the compiler sets it to -flteval=any. If you do specify
-flteval, but do not provide a value, the compiler sets it to -flteval=2.

You must not specify the following options in combination with -flteval=2:

■ -fprecision

■ -nofstore

■ -xarch=amd64

■ -xarch=sse2

See also “D.1.1 Precision of Floating Point Evaluators” on page 338.

B.2.21 -fma[={none|fused}]
(SPARC) Enables automatic generation of floating-point, fused, multiply-add instructions.
-fma=none disables generation of these instructions. -fma=fused allows the compiler to attempt
to find opportunities to improve the performance of the code by using floating-point, fused,
multiply-add instructions.

The default is -fma=none.

The minimum requirements are -xarch=sparcfmaf and an optimization level of at least -xO2
for the compiler to generate fused multiply-add instructions. The compiler marks the binary
program if fused multiply-add instructions are generated in order to prevent the program from
executing on platforms that do not support them.

B.2.22 -fnonstd

(SPARC) This option is a macro for -fns and -ftrap=common.

B.2 The ccOptions

Appendix B • C Compiler Options Reference 227

B.2.23 -fns[={no|yes}]
■ (SPARC) Turns on the SPARC nonstandard floating-point mode.

The default is -fns=no, the SPARC standard floating-point mode. -fns is the same as
-fns=yes.
Optional use of =yes or =no provides a way of toggling the -fns flag following some other
macro flag that includes -fns, such as -fast.
On some SPARC systems, the nonstandard floating point mode disables “gradual
underflow,” causing tiny results to be flushed to zero rather than producing subnormal
numbers. It also causes subnormal operands to be replaced silently by zero. On those
SPARC systems that do not support gradual underflow and subnormal numbers in
hardware, use of this option can significantly improve the performance of some programs.
When nonstandard mode is enabled, floating point arithmetic may produce results that do
not conform to the requirements of the IEEE 754 standard. See the Numerical Computation
Guide for more information.
This option is effective only on SPARC systems and only if used when compiling the main
program. On x86 systems, the option is ignored.

■ (x86) Selects SSE flush-to-zero mode and, where available, denormals-are-zero mode.
This option causes subnormal results to be flushed to zero. Where available, this option also
causes subnormal operands to be treated as zero.
This option has no effect on traditional x86 floating-point operations that do utilize the SSE
or SSE2 instruction set.

B.2.24 -fprecision=p
(x86) -fprecision={single, double, extended}

Initializes the rounding-precision mode bits in the Floating-point Control Word to single (24
bits), double (53 bits), or extended (64 bits), respectively. The default floating-point
rounding-precision mode is extended.

Note that on x86, only the precision, not exponent, range is affected by the setting of
floating-point rounding precision mode.

B.2.25 -fround=r
Sets the IEEE 754 rounding mode that is established at runtime during the program
initialization.

r must be one of: nearest, tozero, negative, positive.

B.2 The ccOptions

Sun Studio 12: C User's Guide •228

The default is -fround=nearest.

The meanings are the same as those for the ieee_flags subroutine.

When r is tozero, negative, or positive, this flag sets the rounding direction mode to
round-to-zero, round-to-negative-infinity, or round-to-positive-infinity respectively when a
program begins execution. When r is nearest or the -fround flag is not used, the rounding
direction mode is not altered from its initial value (round-to-nearest by default).

This option is effective only if used when compiling the main program.

B.2.26 -fsimple[=n]
Allows the optimizer to make simplifying assumptions concerning floating-point arithmetic.

The compiler defaults to -fsimple=0. Specifying -fsimple, is equivalent to -fsimple=1.

If n is present, it must be 0, 1, or 2.

TABLE B–8 The -fsimpleFlags

Value Meaning

-fsimple=0 Permits no simplifying assumptions. Preserve strict IEEE 754
conformance.

-fsimple=1 Allows conservative simplifications. The resulting code does not
strictly conform to IEEE 754, but numeric results of most
programs are unchanged.

With -fsimple=1, the optimizer can assume the following:
■ IEEE 754 default rounding/trapping modes do not change

after process initialization.

■ Computations producing no visible result other than
potential floating point exceptions may be deleted.

■ Computations with Infinity or NaNs as operands need not
propagate NaNs to their results; for example, x*0 may be
replaced by 0.

■ Computations do not depend on sign of zero.
With -fsimple=1, the optimizer is not allowed to optimize
completely without regard to roundoff or exceptions. In
particular, a floating-point computation cannot be replaced
by one that produces different results with rounding modes
held constant at runtime.

B.2 The ccOptions

Appendix B • C Compiler Options Reference 229

TABLE B–8 The -fsimple Flags (Continued)
Value Meaning

-fsimple=2 Includes all the functionality of -fsimple=1 and also enables use
of SIMD instructions to compute reductions when
-xvector=simd is in effect.

The compiler attempts aggressive floating point optimizations
that may cause many programs to produce different numeric
results due to changes in rounding. For example, -fsimple=2
permits the optimizer to replace all computations of x/y in a
given loop with x*z, where x/y is guaranteed to be evaluated at
least once in the loop, z=1/y, and the values of y and z are known
to have constant values during execution of the loop.

Even with -fsimple=2, the optimizer is not permitted to introduce a floating point exception in
a program that otherwise produces none.

See Techniques for Optimizing Applications: High Performance Computing written by Rajat Garg
and Ilya Sharapov for a more detailed explanation of how optimization can impact precision.

B.2.27 -fsingle

(-Xt and -Xs modes only) Causes the compiler to evaluate float expressions as single
precision rather than double precision. This option has no effect if the compiler is used in either
-Xa or -Xc modes, as float expressions are already evaluated as single precision.

B.2.28 -fstore

(x86) Causes the compiler to convert the value of a floating-point expression or function to the
type on the left-hand side of an assignment, when that expression or function is assigned to a
variable, or when the expression is cast to a shorter floating-point type, rather than leaving the
value in a register. Due to rounding and truncation, the results may be different from those that
are generated from the register value. This is the default mode.

To turn off this option, use the -nofstore option.

B.2.29 -ftrap=t[,t...]
Sets the IEEE trapping mode in effect at startup but does not install a SIGFPE handler. You can
use ieee_handler(3M) or fex_set_handling(3M) to simultaneously enable traps and install a
SIGFPE handler. If you specify more than one value, the list is processed sequentially from left
to right.

B.2 The ccOptions

Sun Studio 12: C User's Guide •230

t can be one of the following values.

TABLE B–9 The -ftrapFlags

Flag Meaning

[no%]division [Do not] Trap on division by zero.

[no%]inexact [Do not] Trap on inexact result.

[no%]invalid [Do not] Trap on invalid operation.

[no%]overflow [Do not] Trap on overflow.

[no%]underflow [Do not] Trap on underflow.

%all Trap on all of the above.

%none Trap on none of the above.

common Trap on invalid, division by zero, and overflow.

Note that the [no%] form of the option is used only to modify the meaning of the %all and
common values, and must be used with one of these values, as shown in the example. The [no%]
form of the option by itself does not explicitly cause a particular trap to be disabled.

If you do not specify –ftrap, the compiler assumes –ftrap=%none.

Example: –ftrap=%all,no%inexact means to set all traps except inexact.

If you compile one routine with –ftrap=t, compile all routines of the program with the same
-ftrap=t option; otherwise, you might get unexpected results.

Use the -ftrap=inexact trap with caution. Use of –ftrap=inexact results in the trap being
issued whenever a floating-point value cannot be represented exactly. For example, the
following statement generates this condition:

x = 1.0 / 3.0;

This option is effective only if used when compiling the main program. Be cautious when using
this option. If you wish to enable the IEEE traps, use –ftrap=common.

B.2.30 -G

Produce a shared object rather than a dynamically linked executable. This option is passed to
ld(1), and cannot be used with the -dn option.

When you use the -G option, the compiler does not pass any default -l options to ld. If you
want the shared library to have a dependency on another shared library, you must pass the
necessary -l option on the command line.

B.2 The ccOptions

Appendix B • C Compiler Options Reference 231

If you are creating a shared object by specifying -G along with other compiler options that must
be specified at both compile time and link time, make sure that those same options are also
specified when you link with the resulting shared object.

When you create a shared object, all the object files that are compiled with -xarch=v9 must also
be compiled with an explicit -xcode value as documented in “B.2.80 -xcode[=v]” on page 258.

B.2.31 -g

Produces additional symbol table information for debugging with dbx(1) and the Performance
Analyzer analyzer(1).

If you specify -g, and the optimization level is -xO3 or lower, the compiler provides best-effort
symbolic information with almost full optimization. Tail-call optimization and back-end
inlining are disabled.

If you specify -g and the optimization level is -xO4, the compiler provides best-effort symbolic
information with full optimization.

Compile with the -g option to use the full capabilities of the Performance Analyzer. While some
performance analysis features do not require -g, you must compile with -g to view annotated
source, some function level information, and compiler commentary messages. See the
analyzer(1) man page and the Performance Analyzer manual for more information.

The commentary messages that are generated with -g describe the optimizations and
transformations that the compiler made while compiling your program. Use the er_src(1)
command to display the messages, which are interleaved with the source code.

Note – In previous releases, this option forced the compiler to use the incremental linker (ild)
by default instead of the linker (ld) for link-only invocations of the compiler. That is, with -g,
the compiler’s default behavior was to automatically invoke ild in place of ld whenever you
used the compiler to link object files, unless you specified -G or source files on the command
line. This is no longer the case. The incremental linker is no longer available.

For more information on debugging, see the Debugging a Program With dbx manual.

B.2.32 -H

Prints to standard error, one per line, the path name of each file included during the current
compilation. The display is indented so as to show which files are included by other files.

Here, the program sample.c includes the files, stdio.h and math.h; math.h includes the file,
floatingpoint.h, which itself includes functions that use sys/ieeefp.h:

B.2 The ccOptions

Sun Studio 12: C User's Guide •232

% cc -H sample.c

/usr/include/stdio.h

/usr/include/math.h

/usr/include/floatingpoint.h

/usr/include/sys/ieeefp.h

B.2.33 -hname
Assigns a name to a shared dynamic library as a way to have different versions of a library. In
general, the name after -h should be the same as the file name given after the -o option. The
space between -h and name is optional.

The linker assigns the specified name to the library and records the name in the library file as the
intrinsic name of the library. If there is no -hname option, then no intrinsic name is recorded in
the library file.

When the runtime linker loads the library into an executable file, it copies the intrinsic name
from the library file into the executable, into a list of needed shared library files. Every
executable has such a list. If there is no intrinsic name of a shared library, then the linker copies
the path of the shared library file instead.

B.2.34 -I[-|dir]
-I dir adds dir to the list of directories that are searched for #include files with relative file
names prior to /usr/include, that is, those directory paths not beginning with a / (slash).

Directories for multiple -I options are searched in the order specified.

For more information on the search pattern of the compiler, see “2.14.1 Using the -I- Option to
Change the Search Algorithm” on page 57.

B.2.35 -i

Passes the option to the linker to ignore any LD_LIBRARY_PATH or LD_LIBRARY_PATH_64 setting.

B.2.36 -KPIC

(SPARC) Obsolete. You should not use this option. Use -xcode=pic32 instead.

For more information, see “B.2.80 -xcode[=v]” on page 258. For a complete list of obsolete
options, see “A.1.15 Obsolete Options” on page 214.

(x86) -KPIC is identical to -Kpic.

B.2 The ccOptions

Appendix B • C Compiler Options Reference 233

B.2.37 -Kpic

(SPARC) Obsolete. You should not use this option. Use -xcode=pic13 instead. For more
information, see “B.2.80 -xcode[=v]” on page 258. For a complete list of obsolete options, see
“A.1.15 Obsolete Options” on page 214.

(x86) Generate position-independent code for use in shared libraries (small model). Permits
references to, at most, 2**11 unique external symbols.

B.2.38 -keeptmp

Retains temporary files created during compilation instead of deleting them automatically.

B.2.39 -Ldir
Adds dir to the list of directories searched for libraries by ld(1). This option and its arguments
are passed to ld(1).

Note – Never specify the compiler installation area, /usr/include, /lib, or /usr/lib, as search
directories.

B.2.40 -lname
Links with object library libname.so, or libname.a. The order of libraries in the
command-line is important, as symbols are resolved from left to right.

This option must follow the sourcefile arguments.

B.2.41 -m32|-m64
Specifies the memory model for the compiled binary object.

Use -m32 to create 32-bit executables and shared libraries. Use -m64 to create 64-bit executables
and shared libraries.

The ILP32 memory model (32-bit int, long, pointer data types) is the default on all Solaris
platforms and on Linux platforms that are not 64-bit enabled. The LP64 memory model (64-bit
long, pointer data types) is the default on Linux platforms that are 64-bit enabled. -m64 is
permitted only on platforms that are enabled for the LP64 model.

Object files or libraries compiled with -m32 cannot be linked with object files or libraries
compiled with-m64.

B.2 The ccOptions

Sun Studio 12: C User's Guide •234

When compiling applications with large amounts of static data using -m64, -xmodel=medium
may also be required. Be aware that some Linux platforms do not support the medium model.

Note that in previous compiler releases, the memory model, ILP32 or LP64, was implied by the
choice of the instruction set with -xarch. Starting with the Sun Studio 12 compilers, this is no
longer the case. On most platforms, just adding -m64 to the command line is sufficient to create
64-bit objects.

On Solaris, -m32 is the default. On Linux systems supporting 64-bit programs, -m64
-xarch=sse2 is the default.

See also -xarch.

B.2.42 -mc

Removes duplicate strings from the .comment section of the object file. When you use the -mc
flag, mcs -c is invoked.

B.2.43 -misalign

(SPARC) Obsolete. You should not use this option. Use the -xmemalign=1i option instead. For
more information, see “B.2.111 -xmemalign=ab” on page 277. For a complete list of obsolete
options, see “A.1.15 Obsolete Options” on page 214.

B.2.44 -misalign2

(SPARC) Obsolete. You should not use this option. Use the -xmemalign=2i option instead. For
more information, see “B.2.111 -xmemalign=ab” on page 277. For a complete list of obsolete
options, see “A.1.15 Obsolete Options” on page 214.

B.2.45 -mr[,string]
-mr removes all strings from the .comment section. When you use this flag, mcs -d -a is
invoked.

-mr,string removes all strings from the .comment section and inserts string in that section of the
object file. If string contains embedded blanks, it must be enclosed in quotation marks. A null
string results in an empty .comment section. This option is passed as -d -astring to mcs.

B.2.46 -mt

Compile and link for multithreaded code.

B.2 The ccOptions

Appendix B • C Compiler Options Reference 235

This option passes -D_REENTRANT to the preprocessor and passes -lthread in the correct order
to ld.

The -mt option is required if the application or libraries are multithreaded.

To ensure proper library linking order, you must use this option, rather than -lthread, to link
with libthread.

If you are using POSIX threads, you must link with the options -mt -lpthread. The -mt option
is necessary because libC and libCrun need libthread for a multithreaded application.

If you compile and link in separate steps and you compile with -mt, you might get unexpected
results. If you compile one translation unit with -mt, compile all units of the program with -mt.

See also “B.2.113 -xnolib” on page 279.

B.2.47 -native

This option is a synonym for -xtarget=native.

B.2.48 -nofstore

(x86) Does not convert the value of a floating-point expression or function to the type on the
left-hand side of an assignment, when that expression or function is assigned to a variable or is
cast to a shorter floating-point type; rather, it leaves the value in a register. See also “B.2.28
-fstore” on page 230.

B.2.49 -O

Use default optimization level -xO3. The -O macro now expands to -xO3 instead of -xO2.

The change in default yields higher run-time performance. However, -x03 may be
inappropriate for programs that rely on all variables being automatically considered volatile.
Typical programs that might have this assumption are device drivers and older multi-threaded
applications that implement their own synchronization primitives. The work around is to
compile with -xO2 instead of -O.

B.2.50 -ofilename
Names the output file filename (as opposed to the default, a.out). filename cannot be the same
as sourcefile, since cc does not overwrite the source file. This option and its arguments are
passed to ld(1).

B.2 The ccOptions

Sun Studio 12: C User's Guide •236

B.2.51 -P

Runs the source file through the C preprocessor only. It then puts the output in a file with a .i
suffix. Unlike -E, this option does not include preprocessor-type line number information in
the output. See also the -E option.

B.2.52 -p

Obsolete, see “B.2.127 -xpg” on page 292.

B.2.53 -Q[y|n]
Emits or does not emit identification information to the output file. -Qy is the default.

If -Qy is used, identification information about each invoked compilation tool is added to the
.comment section of output files, which is accessible with mcs. This option can be useful for
software administration.

-Qn suppresses this information.

B.2.54 -qp

Same as -p.

B.2.55 -Rdir[:dir]
Passes a colon-separated list of directories used to specify library search directories to the
runtime linker. If present and not null, it is recorded in the output object file and passed to the
runtime linker.

If both LD_RUN_PATH and the -R option are specified, the -R option takes precedence.

B.2.56 -S

Directs cc to produce an assembly source file but not to assemble the program.

B.2.57 -s

Removes all symbolic debugging information from the output object file. This option cannot be
specified with -g.

Passed to ld(1).

B.2 The ccOptions

Appendix B • C Compiler Options Reference 237

B.2.58 -Uname
Undefines the preprocessor symbol name. This option removes any initial definition of the
preprocessor symbol name created by -D on the same command line including those placed
there by the command-line driver.

-U has no effect on any preprocessor directives in source files. You can give multiple -U options
on the command line.

If the same name is specified for both -D and -U on the command line, name is undefined,
regardless of the order the options appear. In the following example, -U undefines __sun:

cc -U__sun text.c

Preprocessor statements of the following form in test.c will not take effect because __sun is
undefined.

#ifdef(__sun)

See “B.2.7 -Dname[(arg[,arg])][=expansion]” on page 220 for a list of predefined symbols.

B.2.59 -V

Directs cc to print the name and version ID of each component as the compiler executes.

B.2.60 -v

Directs the compiler to perform stricter semantic checks and to enable other lint-like checks.
For example, the code:

#include <stdio.h>

main(void)

{

printf("Hello World.\n");
}

compiles and executes without problem. With -v, it still compiles; however, the compiler
displays this warning:

"hello.c", line 5: warning: function has no return statement:

main

-v does not give all the warnings that lint(1) does. Try running the above example through
lint.

B.2 The ccOptions

Sun Studio 12: C User's Guide •238

B.2.61 -Wc,arg
Passes the argument arg to a specified component c. See Table 1–1 for a list of components.

Each argument must be separated from the preceding only by a comma. All -W arguments are
passed after the regular command-line arguments. A comma can be part of an argument by
using the escape character \ (backslash) immediately before the comma. All -W arguments are
passed after the regular command-line arguments.

For example, -Wa,-o,objfile passes -o and objfile to the assembler, in that order. Also,
-Wl,-I,name causes the linking phase to override the default name of the dynamic linker,
/usr/lib/ld.so.1.

The order in which the argument(s) are passed to a tool with respect to the other specified
command line options may change.

c can be one of the following:

TABLE B–10 The -WFlags

Flag Meaning

a Assembler: (fbe); (gas)

c C code generator: (cg) (SPARC) ;

d cc driver

h Intermediate code translator (ir2hf)(x86)

i Interprocedural optimizer (ube_ipa)(x86)

l Link editor (ld)

m mcs

O (Capital o) Interprocedural optimizer

o (Lowercase o) Postoptimizer

p Preprocessor (cpp)

u C code generator (ube) (x86)

0 (Zero) Compiler (acomp) (ssbd, SPARC)

2 Optimizer: (iropt)

B.2 The ccOptions

Appendix B • C Compiler Options Reference 239

B.2.62 -w

Suppresses compiler warning messages.

This option overrides the error_messages pragma.

B.2.63 -X[c|a|t|s]
The -X (note uppercase X) options specify varying degrees of compliance to the ISO C standard.
The value of -xc99 affects which version of the ISO C standard the -X option applies. The -xc99
option defaults to -xc99=all which supports the 1999 ISO/IEC C standard. -xc99=none
supports the 1990 ISO/IEC C standard. See Table C–6 for a discussion of supported 1999
ISO/IEC features. See “G.2 libfast.a Library” on page 380 for a discussion of differences
between ISO/IEC C and K&R C.

The default mode is -Xa.

-Xc

(c = conformance) Issues errors and warnings for programs that use non-ISO C constructs.
This option is strictly conformant ISO C, without K&R C compatibility extensions. The
predefined macro __STDC__ has a value of 1 with the-Xc option.

-Xa

This is the default compiler mode. ISO C plus K&R C compatibility extensions, with semantic
changes required by ISO C. Where K&R C and ISO C specify different semantics for the same
construct, the compiler uses the ISO C interpretation. If the -Xa option is used in conjunction
with the -xtransition option, the compiler issues warnings about the different semantics. The
predefined macro __STDC__has a value of -0 with the-Xa option.

-Xt

(t = transition) This option uses ISO C plus K&R C compatibility extensions without semantic
changes required by ISO C. Where K&R C and ISO C specify different semantics for the same
construct, the compiler uses the K&R C interpretation. If you use the -Xt option in conjunction
with the -xtransition option, the compiler issues warnings about the different semantics. The
predefined macro __STDC__ has a value of 0 with the -Xt option.

-Xs

(s = K&R C) Attempts to warn about all language constructs that have differing behavior
between ISO C and K&R C. The compiler language includes all features compatible with K&R
C. This option invokes cpp for preprocessing. __STDC__ is not defined in this mode.

B.2 The ccOptions

Sun Studio 12: C User's Guide •240

B.2.64 -x386

(x86) Obsolete. You should not use this option. Use -xchip=generic instead. For a complete
list of obsolete options, see “A.1.15 Obsolete Options” on page 214.

B.2.65 -x486

(x86) Obsolete. You should not use this option. Use -xchip=generic instead. For a complete
list of obsolete options, see “A.1.15 Obsolete Options” on page 214.

B.2.66 -xa

Obsolete. Do not use this option. Use -xprofile=tcov instead. For a complete list of obsolete
options and flags, see “A.1.15 Obsolete Options” on page 214.

B.2.67 -xalias_level[=l]
The compiler uses the -xalias_level option to determine what assumptions it can make in
order to perform optimizations using type-based alias-analysis. This option places the indicated
alias level into effect for the translation units being compiled.

If you do not specify the -xalias_level command, the compiler assumes -xalias_level=any.
If you specify -xalias_level without a value, the default is -xalias_level=layout.

The -xalias_level option requires optimization level -xO3 or above. If optimization is set
lower, a warning is issued and the -xalias_level option is ignored.

Remember that if you issue the -xalias_level option but you fail to adhere to all of the
assumptions and restrictions about aliasing described for any of the alias levels, the behavior of
your program is undefined.

Replace l with one of the terms in the following table.

TABLE B–11 The Levels of Alias-Disambiguation

Flag Meaning

any The compiler assumes that all memory references can alias at this level. There is no
type-based alias analysis at the level of -xalias_level=any.

B.2 The ccOptions

Appendix B • C Compiler Options Reference 241

TABLE B–11 The Levels of Alias-Disambiguation (Continued)
Flag Meaning

basic If you use the -xalias_level=basic option, the compiler assumes that memory
references that involve different C basic types do not alias each other. The compiler also
assumes that references to all other types can alias each other as well as any C basic type.
The compiler assumes that references using char * can alias any other type.

For example, at the -xalias_level=basic level, the compiler assumes that a pointer
variable of type int * is not going to access a float object. Therefore it is safe for the
compiler to perform optimizations that assume a pointer of type float * will not alias the
same memory that is referenced with a pointer of type int *.

weak If you use the -xalias_level=weak option, the compiler assumes that any structure
pointer can point to any structure type.

Any structure or union type that contains a reference to any type that is either referenced
in an expression in the source being compiled or is referenced from outside the source
being compiled, must be declared prior to the expression in the source being compiled.

You can satisfy this restriction by including all the header files of a program that contain
types that reference any of the types of the objects referenced in any expression of the
source being compiled.

At the level of -xalias_level=weak, the compiler assumes that memory references that
involve different C basic types do not alias each other. The compiler assumes that
references using char * alias memory references that involve any other type.

layout If you use the -xalias_level=layout option, the compiler assumes that memory
references that involve types with the same sequence of types in memory can alias each
other.

The compiler assumes that two references with types that do not look the same in memory
do not alias each other. The compiler assumes that any two memory accesses through
different struct types alias if the initial members of the structures look the same in
memory. However, at this level, you should not use a pointer to a struct to access some
field of a dissimilar struct object that is beyond any of the common initial sequence of
members that look the same in memory between the two structs. This is because the
compiler assumes that such references do not alias each other.

At the level of -xalias_level=layout the compiler assumes that memory references that
involve different C basic types do not alias each other. The compiler assumes that
references using char * can alias memory references involving any other type.

B.2 The ccOptions

Sun Studio 12: C User's Guide •242

TABLE B–11 The Levels of Alias-Disambiguation (Continued)
Flag Meaning

strict If you use the -xalias_level=strict option, the compiler assumes that memory
references, that involve types such as structs or unions, that are the same when tags are
removed, can alias each other. Conversely, the compiler assumes that memory references
involving types that are not the same even after tags are removed do not alias each other.

However, any structure or union type that contains a reference to any type that is part of
any object referenced in an expression in the source being compiled, or is referenced from
outside the source being compiled, must be declared prior to the expression in the source
being compiled.

You can satisfy this restriction by including all the header files of a program that contain
types that reference any of the types of the objects referenced in any expression of the
source being compiled. At the level of -xalias_level=strict the compiler assumes that
memory references that involve different C basic types do not alias each other. The
compiler assumes that references using char * can alias any other type.

std If you use the -xalias_level=std option, the compiler assumes that types and tags need
to be the same to alias, however, references using char * can alias any other type. This rule
is the same as the restrictions on the dereferencing of pointers that are found in the 1999
ISO C standard. Programs that properly use this rule will be very portable and should see
good performance gains under optimization.

strong If you use the -xalias_level=strong option, the same restrictions apply as at the std
level, but additionally, the compiler assumes that pointers of type char * are used only to
access an object of type char. Also, the compiler assumes that there are no interior
pointers. An interior pointer is defined as a pointer that points to a member of a struct.

B.2.68 -xarch=isa
Specify instruction set architecture (ISA). If you use this option with optimization, the
appropriate choice can provide good performance of the executable on the specified
architecture. An inappropriate choice results in a binary program that is not executable on the
intended target platform.

Note – Use the -m64 or -m32 option to specify the intended memory model, LP64 (64-bits) or
ILP32 (32-bits) respectively. The -xarch option no longer indicates the memory model, except
for compatibility with previous releases, as indicated below.

Although-xarch can be used alone, it is part of the expansion of the-xtarget option and may
be used to override the-xarch value that is set by a specific-xtarget option. For example:

% cc -xtarget=ultra2 -xarch=v8plusb ...

overrides the-xarch=v8 set by-xtarget=ultra2.

B.2 The ccOptions

Appendix B • C Compiler Options Reference 243

B.2.68.1 -xarch Flags for SPARC
The following table details the performance of an executable that is compiled with a
given-xarch option and then executed by various SPARC processors. The purpose of this table
is to help you identify the best-xarch option for your executable given a particular target
machine. Start by identifying the range of machines that are of interest to you and then consider
the cost of maintaining multiple binaries versus the benefit of extracting the last iota of
performance from newer machines.

TABLE B–12 The -xarchMatrix

Instruction Set of SPARC Machine:

V8a V8 V9

(Non-Sun Processor)

V9

(Sun processor)

V9b

v8a N S S S S

-xarch compilation
option

v8 PD N S S S

v8plus NE NE N S S

v8plusa NE NE ** N S

v8plusb NE NE ** NE N

v9 NE NE N S S

v9a NE NE ** N S

v9b NE NE 1 NE N

** Note: An executable compiled with this instruction set may perform nominally on a V9 non-Sun processor chip or it may not
execute at all. Check with your hardware vendor to make sure your executable can run on its target machine.

1 **

■ N reflects Nominal performance. The program executes and takes full advantage of the
processor’s instruction set.

■ S reflects Satisfactory performance. The program executes but may not exploit all available
processor instructions.

■ PD reflects Performance Degradation. The program executes, but depending on the
instructions used, may experience slight to significant performance degradation. The
degradation occurs when instructions that are not implemented by the processor are
emulated by the kernel.

■ NE means Not Executable. The program will not execute because the kernel does not
emulate the instructions that are not implemented by the processor.

If you are compiling your executable with the v8plus or v8plusa instruction set, consider
compiling with v9 or v9a instead. The v8plus and v8plusa options are provided so that

B.2 The ccOptions

Sun Studio 12: C User's Guide •244

programs can take advantage of some SPARC V9 and UltraSPARC features prior to the
availability of Solaris 8 software with its support for 64-bit programs. Programs compiled with
the v8plus or v8plusa option are not portable to SPARC V8 or older machines. You can
recompile such programs with v9 or v9a, respectively, to take full advantage of all the features of
SPARC V9 and UltraSPARC. The V8+ Technical Specification white paper, part number
802-7447-10, is available through your Sun representative and explains the limitations of
v8plus and v8plusa.

■ SPARC instruction set architectures V8 and V8a are binary compatible.
■ Object binary files (.o) compiled with v8plus and v8plusa can be linked and can execute

together, but only on a SPARC V8plusa compatible platform.
■ Object binary files (.o) compiled with v8plus, v8plusa, and v8plusb can be linked and can

execute together, but only on a SPARC V8plusb compatible platform.
■ -xarch values v9, v9a, and v9b are only available on UltraSPARC 64-bit Solaris operating

systems.
■ Object binary files (.o) compiled with v9 and v9a can be linked and can execute together, but

will run only on a SPARC V9a compatible platform.
■ Object binary files (.o) compiled with v9, v9a, and v9b can be linked and can execute

together, but will run only on a SPARC V9b compatible platform.

For any particular choice, the generated executable may run much more slowly on earlier
architectures. Also, although quad-precision (REAL*16 and long double) floating-point
instructions are available in many of these instruction set architectures, the compiler does not
use these instructions in the code it generates.

The following table gives details for each of the-xarch keywords on SPARC platforms.

TABLE B–13 The -xarch Flags for SPARC Platforms

Flag Meaning

generic Uses the instruction set common to most processors. This is the default.

generic64 Compile for good performance on most 64-bit platforms. (Solaris only).

This option is equivalent to -m64 -xarch=generic and is provided for
compatibility with earlier releases. Use -m64 to specify 64-bit compilation
instead of
-xarch=generic64.

native Compile for good performance on this system. The compiler chooses the
appropriate setting for the current system processor it is running on.

native64 Compile for good performance on this system (Solaris only). This option is
equivalent to -m64 -xarch=native and is provided for compatibility with
earlier releases.

B.2 The ccOptions

Appendix B • C Compiler Options Reference 245

TABLE B–13 The -xarch Flags for SPARC Platforms (Continued)
Flag Meaning

sparc Compile for the SPARC-V9 ISA, but without the Visual Instruction Set (VIS),
and without other implementation-specific ISA extensions. This option enables
the compiler to generate code for good performance on the V9 ISA.

sparcvis Compile for SPARC-V9 plus the Visual Instruction Set (VIS) version 1.0, and
with UltraSPARC extensions. This option enables the compiler to generate code
for good performance on the UltraSPARC architecture.

sparcvis2 Enables the compiler to generate object code for the UltraSPARC architecture,
plus the Visual Instruction Set (VIS) version 2.0, and with UltraSPARC III
extensions.

sparcfmaf Enables the compiler to use instructions from the SPARC-V9 instruction set,
plus the UltraSPARC extensions, including the Visual Instruction Set (VIS)
version 1.0, the UltraSPARC-III extensions, including the Visual Instruction Set
(VIS) version 2.0, and the SPARC64 VI extensions for floating-point
multiply-add.

You must use -xarch=sparcfmaf in conjunction with fma=fused and some
optimization level to get the compiler to attempt to find opportunities to use the
multiply-add instructions automatically.

v7 Compile for the SPARC-V7 ISA. (Obsolete)

Current Solaris operating systems no longer support the SPARC V7
architecture, and programs compiled with this option run slower on current
platforms.

The default is -xarch=v8plus.

Examples: SPARCstation 1, SPARCstation 2.

v8a Compile for the V8a version of the SPARC-V8 ISA. By definition, V8a means
the V8 ISA, but without the fsmuld instruction.

This option enables the compiler to generate code for good performance on the
V8a ISA.

Example: Any system based on the microSPARC I chip architecture

v8 Compile for the SPARC-V8 ISA. Enables the compiler to generate code for
good performance on the V8 architecture. Example: SPARCstation 10

B.2 The ccOptions

Sun Studio 12: C User's Guide •246

TABLE B–13 The -xarch Flags for SPARC Platforms (Continued)
Flag Meaning

v8plus Compile for the V8plus version of the SPARC-V9 ISA. By definition, V8plus
means the V9 ISA, but limited to the 32–bit subset defined by the V8plus ISA
specification, without the Visual Instruction Set (VIS), and without other
implementation-specific ISA extensions.
■ This option enables the compiler to generate code for good performance on

the V8plus ISA.

■ The resulting object code is in SPARC-V8+ ELF32 format and only
executes in a Solaris UltraSPARC environment—it does not run on a V7 or
V8 processor.
Example: Any system based on the UltraSPARC chip architecture

v8plusa Compile for the V8plusa version of the SPARC-V9 ISA. By definition, V8plusa
means the V8plus architecture, plus the Visual Instruction Set (VIS) version
1.0, and with UltraSPARC extensions.
■ This option enables the compiler to generate code for good performance on

the UltraSPARC architecture, but limited to the 32–bit subset defined by
the V8plus specification.

■ The resulting object code is in SPARC-V8+ ELF32 format and only
executes in a Solaris UltraSPARC environment—it does not run on a V8
processor.
Example: Any system based on the UltraSPARC chip architecture

v8plusb Compile for the V8plusb version of the SPARC-V8plus ISA with UltraSPARC
III extensions.

Enables the compiler to generate object code for the UltraSPARC architecture,
plus the Visual Instruction Set (VIS) version 2.0, and with UltraSPARC III
extensions.
■ The resulting object code is in SPARC-V8+ ELF32 format and executes

only in a Solaris UltraSPARC III environment.

■ Compiling with this option uses the best instruction set for good
performance on the UltraSPARC III architecture.

v9 Is equivalent to -m64 -xarch=sparc. Legacy makefiles and scripts that use
-xarch=v9 to obtain the 64-bit memory model need only use -m64.

v9a Is equivalent to -m64 -xarch=sparcvis and is provided for compatibility with
earlier releases.

v9b Is equivalent to -m64 -xarch=sparcvis2 and is provided for compatibility with
earlier releases.

B.2.68.2 -xarch Flags for x86
The following table lists the -xarch flags on the x86 architecture.

B.2 The ccOptions

Appendix B • C Compiler Options Reference 247

TABLE B–14 The -xarch Flags on x86

Flag Meaning

386 Limits the instruction set to the 386/486 architecture.

amd64 Is equivalent to -m64 -xarch=sse2 (Solaris only). Legacy makefiles
and scripts that use -xarch=amd64 to obtain the 64-bit memory model
need only use -m64.

amd64a Is equivalent to -m64 -xarch=sse2a (Solaris only).

generic Uses the instruction set common to most processors. This is the
default.

generic64 Compile for good performance on most 64-bit platforms. (Solaris
only).

This option is equivalent to -m64 -xarch=generic and is provided for
compatibility with earlier releases. Use -m64 to specify 64-bit
compilation instead of
-xarch=generic64.

native Compile for good performance on this system. The compiler chooses
the appropriate setting for the current system processor it is running
on.

native64 Compile for good performance on this system (Solaris only). This
option is equivalent to -m64 -xarch=native and is provided for
compatibility with earlier releases.

pentium_pro Limits the instruction set to the 32–bit pentium_pro architecture.

pentium_proa Adds the AMD extensions (3DNow!, 3DNow! extensions, and MMX
extensions) to the 32-bit pentium_pro architecture.

sse Adds the SSE instruction set to the pentium_pro architecture.

ssea Adds the AMD extensions (3DNow!, 3DNow! extensions, and MMX
extensions) to the 32-bit SSE architecture.

sse2 Adds the SSE2 instruction set to the pentium_pro architecture.

sse2a Adds the AMD extensions (3DNow!, 3DNow! extensions, and MMX
extensions) to the 32-bit SSE2 architecture.

sse3 Adds the SSE3 instruction set to SSE2 instruction set.

Special x86 Notes

There are some important issues to be aware of when compiling for x86 Solaris platforms.

B.2 The ccOptions

Sun Studio 12: C User's Guide •248

The legacy Sun-style parallelization pragmas are not available on x86. Use OpenMP instead. See
the Sun Studio 12: OpenMP API User’s Guide for information on converting legacy
parallelization directives to OpenMP.

Programs compiled with -xarch set to sse, sse2, sse2a, or sse3 must be run only on platforms
that provide these extensions and features.

OS releases starting with Solaris 9 4/04 are SSE/SSE2-enabled on Pentium 4-compatible
platforms. Earlier versions of Solaris OS are not SSE/SSE2-enabled. If an instruction set selected
by -xarch is not enabled in the running Solaris OS, the compiler will not be able to generate or
link code for that instruction set.

If you compile and link in separate steps, always link using the compiler and using the same
-xarch setting to ensure that the correct startup routine is linked.

Numerical results on x86 may differ from results on SPARC due to the x86 80-bit floating-point
registers. To minimize these differences, use the -fstore option or compile with -xarch=sse2

if the hardware supports SSE2.

Numerical results can also differ between Solaris and Linux because the intrinsic math libraries
(for example, sin(x)) are not the same.

Binary Compatibility Verification

Starting with Sun Studio 11 and the Solaris 10 OS, program binaries compiled and built using
these specialized -xarch hardware flags are verified that they are being run on the appropriate
platform.

On systems prior to Solaris 10, no verification is done and it is the user's responsibility to ensure
objects built using these flags are deployed on suitable hardware.

Running programs compiled with these -xarch options on platforms that are not enabled with
the appropriate features or instruction set extensions could result in segmentation faults or
incorrect results occurring without any explicit warning messages.

This warning extends also to programs that employ .il inline assembly language functions or
__asm() assembler code that utilize SSE, SSE2, SSE2a, and SSE3 instructions and extensions.

B.2.68.3 The SPARC Default
The default architecture for which the C compiler produces code is now v8plus (UltraSPARC).
Support for v7 will be dropped in a future release.

The new default yields higher run-time performance for nearly all machines in current use.
However, applications that are intended for deployment on pre-UltraSPARC computers no
longer execute by default on those computers. Compile with -xarch=v8 to ensure that the
applications execute on those computers.

B.2 The ccOptions

Appendix B • C Compiler Options Reference 249

If you want to deploy on v8 systems, you must specify the option -xarch=v8 explicitly on every
compiler command line as well as any link-time commands. The provided system libraries run
on v8 architectures.

If you want to deploy on v7 systems, you must specify the option -xarch=v7 explicitly on every
compiler command line as well as any link-time commands. The provided system libraries use
the v8 instruction set. For this release, the only supported operating system for v7 is the Solaris 8
software. When a v8 instruction is encountered, the Solaris 8 operating system interprets the
instruction in software. The program runs, but performance is degraded.

B.2.68.4 The x86 Default
For x86, -xarch defaults to generic. Note that -fast on x86 expands to -xarch=native. This
option limits the code generated by the compiler to the instructions of the specified instruction
set architecture. This option does not guarantee use of any target–specific instructions.
However, use of this option may affect the portability of a binary program.

If you compile and link in separate steps, make sure you specify the same value for -xarch in
both steps. For a complete list of all compiler options that must be specified at both compile
time and at link time, see Table A–2.

B.2.69 -xautopar

Note – This option does not accept OpenMP parallelization directives. The Sun-specific MP
pragmas have been deprecated and are no longer supported. See the Sun Studio 12: OpenMP
API User’s Guide for migration information to the directives of the standard.

(SPARC) Turns on automatic parallelization for multiple processors. Does dependence analysis
(analyze loops for inter-iteration data dependence) and loop restructuring. If optimization is
not at-xO3 or higher, optimization is raised to-xO3 and a warning is emitted.

Avoid-xautopar if you do your own thread management.

To achieve faster execution, this option requires a multiple processor system. On a
single-processor system, the resulting binary usually runs slower.

To run a parallelized program in a multithreaded environment, you must set the
OMP_NUM_THREADS environment variable prior to execution. See the Sun Studio 12: OpenMP API
User’s Guide for more information.

If you use-xautopar and compile and link in one step, then linking automatically includes the
microtasking library and the threads-safe C runtime library. If you use-xautopar and compile
and link in separate steps, then you must also link with-xautopar. For a complete list of all
compiler options that must be specified at both compile time and at link time, see Table A–2.

B.2 The ccOptions

Sun Studio 12: C User's Guide •250

B.2.70 -xbinopt={prepare|off}
(SPARC) Instructs the compiler to prepare the binary for later optimizations, transformations
and analysis, see binopt(1). This option may be used for building executables or shared objects.
This option must be used with optimization level -xO1 or higher to be effective. There is a
modest increase in size of the binary when built with this option.

If you compile in separate steps, -xbinopt must appear on both compile and link steps:

example% cc -c -xO1 -xbinopt=prepare a.c b.c

example% cc -o myprog -xbinopt=prepare a.o

If some source code is not available for compilation, this option may still be used to compile the
remainder of the code. It should then be used in the link step that creates the final binary. In
such a situation, only the code compiled with this option can be optimized, transformed or
analyzed.

Compiling with -xbinopt=prepare and -g increases the size of the executable by including
debugging information. The default is -xbinopt=off.

B.2.71 -xbuiltin[=(%all|%none)]
Use the -xbuiltin[=(%all|%none)] command when you want to improve the optimization of
code that calls standard library functions. Many standard library functions, such as the ones
defined in math.h and stdio.h, are commonly used by various programs. This command lets
the compiler substitute intrinsic functions or inline system functions where profitable for
performance. See the er_src(1) man page for an explanation of how to read compiler
commentary in object files to determine for which functions the compiler actually makes a
substitution.

However, these substitutions can cause the setting of errno to become unreliable. If your
program depends on the value of errno, avoid this option. See also “2.10 The Value of errno”
on page 54.

If you do not specify -xbuiltin, the default is -xbuiltin=%none, which means no functions
from the standard libraries are substituted or inlined. If you specify -xbuiltin, but do not
provide any argument, the default is -xbuiltin%all, which means the compiler substitutes
intrinsics or inlines standard library functions as it determines the optimization benefit.

If you compile with -fast, then -xbuiltin is set to %all.

Note – -xbuiltin only inlines global functions defined in system header files, never static
functions defined by the user.

B.2 The ccOptions

Appendix B • C Compiler Options Reference 251

B.2.72 -xCC

When you specify -xc99=none and -xCC, the compiler accepts the C++-style comments. In
particular, // can be used to indicate the start of a comment.

B.2.73 -xc99[=o]
The -xc99 option controls compiler recognition of the implemented features from the C99
standard (ISO/IEC 9899:1999, Programming Language - C).

o can be a comma separated list comprised of the following:

TABLE B–15 The -xc99Flags

Flag Meaning

[no]_lib [Do not] Enable the 1999 C standard library semantics of routines that appeared
in both the 1990 and 1999 C standard.

all Turn on recognition of supported C99 language features and enable the 1999 C
standard library semantics of routines that appear in both the 1990 and 1999 C
standard.

none Turn off recognition of C99 language features, and do not enable the 1999 C
standard library semantics of routines that appeared in both the 1990 and 1999 C
standard.

If you do not specify -xc99, the compiler defaults to -xc99=all,no_lib. If you specify -xc99
without any values, the option is set to-xc99=all.

Note – Though the compiler support-level defaults to the language features of the C99 standard,
the standard headers provided by the Solaris 8 and Solaris 9 operating systems in /usr/include

do not conform with the 1999 ISO/IEC C standard. If you encounter error messages, try
specifying -xc99=none to obtain the 1990 ISO/IEC C standard behavior for these headers.

The 1999 C standard library semantics of routines that appeared in both the 1990 and 1999 C
standard are not available and therefore cannot be enabled on Solaris 8 and Solaris 9 software.
The compiler issues an error message when you specify -xc99=lib directly or indirectly on
Solaris 8 or Solaris 9 software.

B.2.74 -xcache[=c]
Defines cache properties for use by the optimizer. This option does not guarantee that any
particular cache property is used.

B.2 The ccOptions

Sun Studio 12: C User's Guide •252

Note – Although this option can be used alone, it is part of the expansion of the -xtarget option;
its primary use is to override a value supplied by the -xtarget option.

This release introduces an optional property [/ti] which sets the number of threads that can
share the cache. If you do not specify a value for t, the default is 1.

c must be one of the following:

■ generic

■ native
■ s1/l1/a1[/t1]
■ s1/l1/a1[/t1]:s2/l2/a2[/t2]
■ s1/l1/a1[/t1]:s2/l2/a2[/t2]:s3/l3/a3[/t3]

The s/l/a/t properties are defined as follows:

si The size of the data cache at level i, in kilobytes

li The line size of the data cache at level i, in bytes

ai The associativity of the data cache at level i

ti The number of hardware threads sharing the cache at level i

The following table lists the-xcache values.

TABLE B–16 The -xcacheFlags

Flag Meaning

generic This is the default value
which directs the compiler
to use cache properties for
good performance on most
x86 and SPARC processors,
without major performance
degradation on any of
them.

With each new release,
these best timing properties
will be adjusted, if
appropriate.

B.2 The ccOptions

Appendix B • C Compiler Options Reference 253

TABLE B–16 The -xcache Flags (Continued)
Flag Meaning

native Set the parameters for the
best performance on the
host environment.

s1/l1/a1[/t1] Define level 1 cache
properties.

s1/l1/a1[/t1]:s2/l2/a2[/t2] Define levels 1 and 2 cache
properties.

s1/l1/a1[/t1]:s2/l2/a2[/t2]:s3/l3/a3[/t3] Define levels 1, 2, and 3
cache properties.

Example:-xcache=16/32/4:1024/32/1 specifies the following:

Level 1 cache has:

16K bytes

32 bytes line size

4-way associativity

Level 2 cache has:

1024K bytes

32 bytes line size

Direct mapping associativity

B.2.75 –xcg[89|92]
(SPARC) Obsolete. You should not use this option. Current Solaris operating systems no longer
support SPARC V7 architecture. Compiling with this option generates code that runs slower on
current SPARC platforms. Use -O instead and take advantage of compiler defaults for -xarch,
-xchip, and -xcache.

B.2.76 -xchar[=o]
The option is provided solely for the purpose of easing the migration of code from systems
where the char type is defined as unsigned. Unless you are migrating from such a system, do not
use this option. Only code that relies on the sign of a char type needs to be rewritten to explicitly
specify signed or unsigned.

You can substitute one of the following for o:

B.2 The ccOptions

Sun Studio 12: C User's Guide •254

TABLE B–17 The -xcharFlags

Flag Meaning

signed Treat character constants and variables declared as char as signed. This impacts
the behavior of compiled code, it does not affect the behavior of library routines.

s Equivalent to signed

unsigned Treat character constants and variables declared as char as unsigned. This
impacts the behavior of compiled code, it does not affect the behavior of library
routines.

u Equivalent to unsigned

If you do not specify -xchar, the compiler assumes -xchar=s.

If you specify -xchar, but do not specify a value, the compiler assumes -xchar=s.

The -xchar option changes the range of values for the type char only for code compiled with
-xchar. This option does not change the range of values for type char in any system routine or
header file. In particular, the value of CHAR_MAX and CHAR_MIN, as defined by limits.h, do not
change when this option is specified. Therefore, CHAR_MAX and CHAR_MIN no longer represent
the range of values encodable in a plain char.

If you use -xchar, be particularly careful when you compare a char against a predefined system
macro because the value in the macro may be signed. This is most common for any routine that
returns an error code which is accessed through a macro. Error codes are typically negative
values so when you compare a char against the value from such a macro, the result is always
false. A negative number can never be equal to any value of an unsigned type.

It is strongly recommended that you never use -xchar to compile routines for any interface
exported through a library. The Solaris ABI specifies type char as signed, and system libraries
behave accordingly. The effect of making char unsigned has not been extensively tested with
system libraries. Instead of using this option, modify your code so that it does not depend on
whether type char is signed or unsigned. The sign of type char varies among compilers and
operating systems.

B.2.77 -xchar_byte_order[=o]
Produce an integer constant by placing the characters of a multi-character character-constant
in the specified byte order. You can substitute one of the following values for o:

■ low: place the characters of a multi-character character-constant in low-to-high byte order.
■ high: place the characters of a multi-character character-constant in high-to-low byte order.

B.2 The ccOptions

Appendix B • C Compiler Options Reference 255

■ default: place the characters of a multi-character character-constant in an order
determined by the compilation mode “B.2.63 -X[c|a|t|s]” on page 240. For more
information, see “2.1.2 Character Constants” on page 34.

B.2.78 -xcheck[=o]
(SPARC) Compiling with -xcheck=stkovf adds a runtime check for stack overflow of the main
thread in a singly-threaded program as well as slave-thread stacks in a multithreaded program.
If a stack overflow is detected, a SIGSEGV is generated. If your application needs to handle a
SIGSEGV caused by a stack overflow differently than it handles other address-space violations,
see sigaltstack(2).

You can substitute one of the following values for o:

TABLE B–18 The -xcheckFlags

Flag Meaning

%none Perform none of the -xcheck checks.

%all Perform all of the -xcheck checks.

stkovf Turns on stack-overflow checking.

no%stkovf Turns off stack-overflow checking.

If you do not specify -xcheck, the compiler defaults to-xcheck=%none. If you specify -xcheck
without any arguments, the compiler defaults to-xcheck=%all which turns on the runtime
check for stack overflow.

The -xcheck option does not accumulate on the command line. The compiler sets the flag in
accordance with the last occurrence of the command.

B.2.79 -xchip[=c]
Specifies the target processor for use by the optimizer.

c must be one of the following: generic, old, super, super2, micro, micro2, hyper, hyper2,
powerup, ultra, ultra2, ultra2e, ultra2i, ultra3, ultra3cu, 386, 486, pentium,
pentium_pro.

Although this option can be used alone, it is part of the expansion of the-xtarget option; its
primary use is to override a value supplied by the-xtarget option.

This option specifies timing properties by specifying the target processor. Some effects are:

B.2 The ccOptions

Sun Studio 12: C User's Guide •256

■ The ordering of instructions, that is, scheduling
■ The way the compiler uses branches
■ The instructions to use in cases where semantically equivalent alternatives are available

The following table lists the -xchip values for SPARC platforms:

TABLE B–19 The SPARC -xchip Flags

Flag Meaning

generic Use timing properties for good performance on most SPARC
architectures.

This is the default value that directs the compiler to use the best timing
properties for good performance on most processors, without major
performance degradation on any of them.

native Set the parameters for the best performance on the host environment.

old Uses timing properties of pre-SuperSPARC processors.

sparc64vi Optimize for the SPARC64 VI processor.

super Uses timing properties of the SuperSPARC processors.

super2 Uses timing properties of the SuperSPARC II processors.

micro Uses timing properties of the microSPARC processors.

micro2 Uses timing properties of the microSPARC II processors.

hyper Uses timing properties of the hyperSPARC processors.

hyper2 Uses timing properties of the hyperSPARC II processors.

powerup Uses timing properties of the Weitek PowerUp processors.

ultra Uses timing properties of the UltraSPARC processors.

ultra2 Uses timing properties of the UltraSPARC II processors.

ultra2e Uses timing properties of the UltraSPARC IIe processors.

ultra2i Uses timing properties of the UltraSPARC IIi processors.

ultra3 Uses timing properties of the UltraSPARC III processors.

ultra3cu Uses timing properties of the UltraSPARC III Cu processors.

ultra3i Uses the timing properties of the UltraSPARC IIIi processors.

ultra4 Uses timing properties of the UltraSPARC IV processors.

ultra4plus Uses the timing properties of the UltraSPARC IVplus processor.

B.2 The ccOptions

Appendix B • C Compiler Options Reference 257

TABLE B–19 The SPARC -xchip Flags (Continued)
Flag Meaning

ultraT1 Uses the timing properties of the UltraSPARC T1 processor.

ultraT2 Uses the timing properties of the UltraSPARC T2 processor.

The following table lists the -xchip values for the x86 platforms:

TABLE B–20 The x86 -xchip Flags

Flag Meaning

generic Use timing properties for good performance on most x86
architectures.

This is the default value that directs the compiler to use the best
timing properties for good performance on most processors,
without major performance degradation on any of them.

native Set the parameters for the best performance on the host
environment.

386 Uses timing properties of the x86 386 architecture.

486 Uses timing properties of the x86 486 architecture

pentium Uses timing properties of the x86 pentium architecture

pentium_pro Uses timing properties of the x86 pentium_pro architecture

pentium3 Uses the timing properties of the x86 Pentium 3 architecture.

pentium4 Uses the timing properties of the x86 Pentium 4 architecture.

B.2.80 -xcode[=v]
(SPARC) Specify code address space.

Note – It is highly recommended that you build shared objects by specifying -xcode=pic13 or
-xcode=pic32. It is possible to build workable shared objects with -xarch=v9 -xcode=abs64

and with -xarch=v8 -xcode=abs32, but these will be inefficient. Shared objects built with
-xarch=v9, -xcode=abs32, or -xarch=v9, -xcode=abs44 will not work.

v must be one of:

B.2 The ccOptions

Sun Studio 12: C User's Guide •258

TABLE B–21 The -xcodeFlags

Value Meaning

abs32 This is the default on 32-bit architectures. Generates 32-bit absolute addresses. Code +
data + bss size is limited to 2**32 bytes.

abs44 This is the default on 64-bit architectures. Generates 44-bit absolute addresses. Code +
data + bss size is limited to 2**44 bytes. Available only on 64–bit architectures.

abs64 Generates 64-bit absolute addresses. Available only on 64-bit architectures.

pic13 Generates position-independent code for use in shared libraries (small model). Equivalent
to -Kpic. Permits references to at most 2**11 unique external symbols on 32-bit
architectures, 2**10 on 64-bit architectures.

pic32 Generates position-independent code for use in shared libraries (large model). Equivalent
to -KPIC. Permits references to at most 2**30 unique external symbols on 32-bit
architectures, 2**29 on 64-bit architectures.

The default is -xcode=abs32 for 32–bit architectures. The default for 64–bit architectures
is-xcode=abs44.

When building shared dynamic libraries, the default -xcode values of abs44 and abs32 will not
work with 64–bit architectures. Specify -xcode=pic13 or -xcode=pic32 instead. There are two
nominal performance costs with– xcode=pic13 and– xcode=pic32 on SPARC.

■ A routine compiled with either– xcode=pic13 or– xcode=pic32 executes a few extra
instructions upon entry to set a register to point at a table (_GLOBAL_OFFSET_TABLE_) used
for accessing a shared library’s global or static variables.

■ Each access to a global or static variable involves an extra indirect memory reference
through _GLOBAL_OFFSET_TABLE_. If the compilation include -xcode=pic32, there are two
additional instructions per global and static memory reference.

When considering the above costs, remember that the use of -xcode=pic13 and -xcode=pic32

can significantly reduce system memory requirements, due to the effect of library code sharing.
Every page of code in a shared library compiled -xcode=pic13 or– xcode=pic32 can be shared
by every process that uses the library. If a page of code in a shared library contains even a single
non-pic (that is, absolute) memory reference, the page becomes nonsharable, and a copy of the
page must be created each time a program using the library is executed.

The easiest way to tell whether or not a .o file has been compiled with -xcode=pic13 or–
xcode=pic32 is with the nm command:

% nm file.o | grep _GLOBAL_OFFSET_TABLE_ U _GLOBAL_OFFSET_TABLE_

A .o file containing position-independent code contains an unresolved external reference to
_GLOBAL_OFFSET_TABLE_, as indicated by the letter U.

B.2 The ccOptions

Appendix B • C Compiler Options Reference 259

To determine whether to use– xcode=pic13 or– xcode=pic32, check the size of the Global
Offset Table (GOT) by using elfdump -c (see the elfdump(1) man page for more information)
and to look for the section header, sh_name: .got. The sh_size value is the size of the GOT. If
the GOT is less than 8,192 bytes, specify -xcode=pic13, otherwise specify -xcode=pic32.

In general, use the following guidelines to determine how you should use -xcode:

■ If you are building an executable you should not use– xcode=pic13 or -xcode=pic32.
■ If you are building an archive library only for linking into executables you should not use–

xcode=pic13 or -xcode=pic32.
■ If you are building a shared library, start with– xcode=pic13 and once the GOT size exceeds

8,192 bytes, use -xcode=pic32.
■ If you are building an archive library for linking into shared libraries you should just use

-xcode=pic32.

B.2.81 -xcrossfile[=n]
Enables optimization and inlining across source files. If specified, n can be 0 or 1.

The default is -xcrossfile=0 which specifies that no crossfile optimizations are performed.
-xcrossfile is equivalent to -xcrossfile=1.

Consider the following command-line example:

example% cc -xcrossfile -xO4 -c f1.c f2.c

example% cc -xcrossfile -xO4 -c f3.c f4.c

Cross-module optimizations occur between files f1.c and f2.c, and between f3.c and f4.c.
No optimizations occur between f1.c and f3.c or f4.c.

Normally the scope of the compiler’s analysis is limited to each separate file on the command
line. For example, -xO4’s automatic inlining is limited to subprograms defined and referenced
within the same source file.

With -xcrossfile, the compiler analyzes all the files named on the command line as if they
had been concatenated into a single source file. -xcrossfile is only effective when used with
-xO4 or -xO5.

However, this option has no effect when you direct the compiler to produce assembly source by
specifying the -S option. Assembly (.s) files do not participate in optimizations and inlining
across source files.

The files produced from this compilation are interdependent due to possible inlining, and must
be used as a unit when they are linked into a program. If any one routine is changed and the files
recompiled, they must all be recompiled. As a result, using this option affects the construction
of make files.

B.2 The ccOptions

Sun Studio 12: C User's Guide •260

See also -xldscope.

B.2.82 -xcsi

Allows the C compiler to accept source code written in locales that do not conform to the ISO C
source character code requirements. These locales include: ja_JP.PCK.

The compiler translation phases required to handle such locales may result in significantly
longer compilation times. You should only use this option when you compile source files that
contain source characters from one of these locales.

The compiler does not recognize source code written in locales that do not conform to the ISO
C source character code requirements unless you specify -xcsi.

B.2.83 -xdebugformat=[stabs|dwarf]
Specify -xdebugformat=dwarf if you maintain software which reads debugging information in
the dwarf format. This option causes the compiler to generate debugging information by using
the dwarf standard format and is the default.

TABLE B–22 The -xdebugformatFlags

Value Meaning

stabs -xdebugformat=stabs generates debugging information using the stabs
standard format.

dwarf -xdebugformat=dwarf generates debugging information using the dwarf
standard format (default).

If you do not specify -xdebugformat, the compiler assumes -xdebugformat=dwarf. This option
requires an argument.

This option affects the format of the data that is recorded with the -g option. Some small
amount of debugging information is recorded even without -g, and the format of that
information is also controlled with this option. So -xdebugformat has an effect even when -g is
not used.

The dbx and Performance Analyzer software understand both stabs and dwarf format so using
this option does not have any effect on the functionality of either tool.

See also the dumpstabs(1) and dwarfdump(1) man pages for more information.

B.2.84 -xdepend=[yes|no]
(SPARC) Analyzes loops for inter-iteration data dependencies and does loop restructuring.

B.2 The ccOptions

Appendix B • C Compiler Options Reference 261

Loop restructuring includes loop interchange, loop fusion, scalar replacement, and elimination
of “dead” array assignments. If optimization is not at -xO3 or higher, the compiler raises
optimization to -xO3 and issues a warning.

If you do not specify -xdepend, the default is -xdepend=no which means the compiler does not
analyze loops for data dependencies. If you specify -xdepend, but do not specify an argument,
the compiler sets the option to -xdepend=yes which means the compiler analyzes loops for data
dependencies.

Dependency analysis is also included with -xautopar or -xparallel. The dependency
analysis is done at compile time.

Dependency analysis may help on single-processor systems. However, if you try -xdepend on
single-processor systems, you should not use either -xautopar or -xexplicitpar. If either of
them is on, then the -xdepend optimization is done for multiple-processor systems.

B.2.85 -xdryrun

This option is a macro for -###.

B.2.86 -xe

Performs only syntax and semantic checking on the source file, but does not produce any object
or executable code.

B.2.87 -xexplicitpar

(SPARC) Obsolete, do not use. Use -xopenmp instead.

Note – -xexplicitpar does not accept OpenMP parallelization directives. However, the
Sun-specific MP pragmas have been deprecated and are no longer supported. However, the
compiler supports the APIs specified by the OpenMP 2.5 standard instead. See theSun
Studio 12: OpenMP API User’s Guide for migration information to the directives of the
standard.

(SPARC) Generates parallelized code based on specification of #pragma MP directives. You do
the dependency analysis: analyze and specify loops for inter-iteration data dependencies. The
software parallelizes the specified loops. If optimization is not at -xO3 or higher, optimization is
raised to -xO3 and a warning is issued. Avoid -xexplicitpar if you do your own thread
management.

To get faster code, this option requires a multiprocessor system. On a single-processor system,
the generated code usually runs slower.

B.2 The ccOptions

Sun Studio 12: C User's Guide •262

If you identify a loop for parallelization, and the loop has dependencies, you can get incorrect
results, possibly different ones with each run, and with no warnings. Do not apply an explicit
parallel pragma to a reduction loop. The explicit parallelization is done, but the reduction
aspect of the loop is not done, and the results can be incorrect.

In summary, to parallelize explicitly:

■ Analyze the loops to find those that are safe to parallelize.
■ Insert #pragma MP to parallelize a loop. See the “3.8.3 Explicit Parallelization and Pragmas”

on page 81” for more information.
■ Use the -xexplicitpar option.

The following is an example of inserting a parallel pragma immediately before the loop:

#pragma MP taskloop

for (j=0; j<1000; j++){

...

}

If you use -xexplicitpar and compile and link in one step, then linking automatically
includes the microtasking library and the threads-safe C runtime library. If you use
-xexplicitpar and compile and link in separate steps, then you must also link with
-xexplicitpar. For a complete list of all compiler options that must be specified at both
compile time and at link time, see Table A–2.

Note – Do not specify -xexplicitpar and -xopenmp together.

B.2.88 -xF[=v[,v...]]
Enables optimal reordering of functions and variables by the linker.

This option instructs the compiler to place functions and/or data variables into separate section
fragments, which enables the linker, using directions in a mapfile specified by the linker’s -M
option, to reorder these sections to optimize program performance. Generally, this
optimization is only effective when page fault time constitutes a significant fraction of program
run time.

Reording of variables can help solve the following problems which negatively impact run-time
performance:

■ Cache and page contention caused by unrelated variables that are near each other in
memory.

■ Unnecessarily large work-set size as a result of related variables which are not near each
other in memory.

B.2 The ccOptions

Appendix B • C Compiler Options Reference 263

■ Unnecessarily large work-set size as a result of unused copies of weak variables that decrease
the effective data density.

Reordering variables and functions for optimal performance requires the following operations:

1. Compiling and linking with -xF.
2. Following the instructions in the "Program Performance Analysis" Tools manual regarding

how to generate a mapfile for functions or following the instructions in the "Linker and
Libraries Guide" regarding how to generate a mapfile for data.

3. Relinking with the new mapfile by using the linker’s -M option.
4. Re-executing under the Analyzer to verify improvement.

B.2.88.1 Values
v can be one or more of the following:

TABLE B–23 The -xFValues

Value Meaning

[no%]func [Do not] fragment functions into separate sections.

[no%]gbldata [Do not] fragment global data (variables with external linkage) into separate
sections.

[no%]lcldata [Do not] fragment local data (variables with internal linkage) into separate
sections.

%all Fragment functions, global data, and local data.

%none Fragment nothing.

If you do not specify -xF, the default is -xF=%none. If you specify -xF without any arguments,
the default is -xF=%none,func.

Using -xF=lcldata inhibits some address calculation optimizations, so you should only use
this flag when it is experimentally justified.

analyzer(1), debugger(1), ld(1) man pages.

B.2.89 -xhelp=f
Displays on-line help information.

f must be either flags, or readme.

-xhelp=flags displays a summary of the compiler options.

B.2 The ccOptions

Sun Studio 12: C User's Guide •264

-xhelp=readme displays the README file.

B.2.90 -xhwcprof

(SPARC) Enables compiler support for hardware counter-based profiling.

When -xhwcprof is enabled, the compiler generates information that helps tools associate
profiled load and store instructions with the data-types and structure members (in conjunction
with symbolic information produced with -gto which they refer. It associates profile data with
the data space of the target, rather than the instruction space, and provides insight into behavior
that is not easily obtained from only instruction profiling.

You can compile a specified set of object files with -xhwcprof. However, -xhwcprof is most
useful when applied to all object files in the application. This will provide coverage to identify
and correlate all memory references distributed in the application’s object files.

If you are compiling and linking in separate steps, use -xhwcprof at link time as well. Future
extensions to -xhwcprof may require its use at link time. For a complete list of all compiler
options that must be specified at both compile time and at link time, see Table A–2.

An instance of -xhwcprof=enable or -xhwcprof=disable overrides all previous instances of
-xhwcprof in the same command line.

-xhwcprof is disabled by default. Specifying -xhwcprof without any arguments is the
equivalent to -xhwcprof=enable.

-xhwcprof requires that optimization be turned on and that the debug data format be set to
DWARF (-xdebugformat=dwarf).

The combination of -xhwcprof and -g increases compiler temporary file storage requirements
by more than the sum of the increases due to -xhwcprof and -g specified alone.

The following command compiles example.c and specifies support for hardware counter
profiling and symbolic analysis of data types and structure members using DWARF symbols:

example% cc -c -O -xhwcprof -g -xdebugformat=dwarf example.c

For more information on hardware counter-based profiling, see the Program Performance
Analysis Tools manual.

B.2.91 -xinline=list
The format of the list for -xinline is as follows:
[{%auto,func_name,no%func_name}[,{%auto,func_name,no%func_name}]...]

B.2 The ccOptions

Appendix B • C Compiler Options Reference 265

-xinline tries to inline only those functions specified in the optional list. The list is either
empty, or comprised of a comma-separated list of func_name, no%func_name, or %auto, where
func_name is a function name. -xinline only has an effect at -xO3 or higher.

TABLE B–24 The -xinlineFlags

Flag Meaning

%auto Specifies that the compiler is to attempt to automatically inline all
functions in the source file. %auto only takes effect at -xO4 or higher
optimization levels. %auto is silently ignored at -xO3 or lower
optimization levels.

func_name Specifies that the compiler is to attempt to inline the named function.

no%func_name Specifies that the compiler is not to inline the named function.

The list of values accumulates from left to right. So for a specification of
-xinline=%auto,no%foo the compiler attempts to inline all functions except foo. For a
specification of -xinline=%bar,%myfunc,no%bar the compiler only tries to inline myfunc.

When you compile with optimization set at -xO4 or above, the compiler normally tries to inline
all references to functions defined in the source file. You can restrict the set of functions the
compiler attempts to inline by specifying the -xinline option. If you specify only -xinline=,
that is you do not name any functions or %auto, this indicates that none of the routines in the
source files are to be inlined. If you specify a list of func_name and no%func_name without
specifying %auto, the compiler only attempts to inline those functions specified in the list. If
%auto is specified in the list of values with the -xinline option at optimization level set at -xO4
or above, the compiler attempts to inline all functions that are not explicitly excluded by
no%func_name.

A function is not inlined if any of the following conditions apply. No warning is issued.
■ Optimization is less than -xO3.
■ The routine cannot be found.
■ Inlining the routine does not look practicable to the optimizer.
■ The source for the routine is not in the file being compiled (however, see -xcrossfile).

If you specify multiple -xinline options on the command line, they do not accumulate. The
last -xinline on the command line specifies what functions the compiler attempts to inline.

See also -xldscope.

B.2.92 -xinstrument=[no%]datarace
Specify this option to compile and instrument your program for analysis by the Thread
Analyzer. For more information on the Thread Analyzer, seetha(1) for details.

B.2 The ccOptions

Sun Studio 12: C User's Guide •266

You can then use the Performance Analyzer to run the instrumented program with collect -r

races to create a data-race-detection experiment. You can run the instrumented code
standalone but it runs more slowly.

You can specify -xinstrument=no%datarace to turn off preparation of source code for the
thread analyzer. This is the default.

It is illegal to specify -xinstrument without an argument.

If you compile and link in separate steps, you must specify -xinstrument=datarace in both the
compilation and linking steps.

This option defines the preprocessor token __THA_NOTIFY. You can specify #ifdef
__THA_NOTIFY to guard calls to libtha(3) routines.

This option also sets -g.

B.2.93 -xipo[=a]
(SPARC) Replace a with 0, 1, or 2. -xipo without any arguments is equivalent -xipo=1.
-xipo=0 is the default setting and turns off -xipo. With -xipo=1, the compiler performs
inlining across all source files.

With -xipo=2, the compiler performs interprocedural aliasing analysis as well as optimizations
of memory allocation and layout to improve cache performance.

The compiler performs partial-program optimizations by invoking an interprocedural analysis
component. Unlike -xcrossfile, -xipo performs optimizations across all object files in the
link step, and is not limited to just the source files of the compile command. However, just like
-xcrossfile, whole-program optimizations performed with -xipo do not include assembly
(.s) source files.

You must specify -xipo both at compile time and at link time. For a complete list of all compiler
options that must be specified at both compile time and at link time, see Table A–2.

The -xipo option generates significantly larger object files due to the additional information
needed to perform optimizations across files. However, this additional information does not
become part of the final executable binary file. Any increase in the size of the executable
program is due to the additional optimizations performed. The object files created in the
compilation steps have additional analysis information compiled within them to permit
crossfile optimizations to take place at the link step.

-xipo is particularly useful when compiling and linking large multi-file applications. Object
files compiled with this flag have analysis information compiled within them that enables
interprocedural analysis across source and pre-compiled program files.

However, analysis and optimization is limited to the object files compiled with -xipo, and does
not extend to object files or libraries.

B.2 The ccOptions

Appendix B • C Compiler Options Reference 267

-xipo is multiphased, so you need to specify -xipo for each step if you compile and link in
separate steps.

Other important information about -xipo:
■ It requires an optimization level of at least -xO4.
■ It conflicts with -xcrossfile. If you use these together, the result is a compilation error.
■ Objects that are compiled without -xipo can be linked freely with objects that are compiled

with -xipo.

B.2.93.1 Examples
In this example, compilation and linking occur in a single step:

cc -xipo -xO4 -o prog part1.c part2.c part3.c

The optimizer performs crossfile inlining across all three source files. This is done in the final
link step, so the compilation of the source files need not all take place in a single compilation
and could take place over a number of separate compilations, each specifying -xipo.

In this example, compilation and linking occur in separate steps:

cc -xipo -xO4 -c part1.c part2.c

cc -xipo -xO4 -c part3.c

cc -xipo -xO4 -o prog part1.o part2.o part3.o

A restriction is that libraries, even if compiled with -xipo, do not participate in crossfile
interprocedural analysis, as this example shows:

cc -xipo -xO4 one.c two.c three.c

ar -r mylib.a one.o two.o three.o

...

cc -xipo -xO4 -o myprog main.c four.c mylib.a

Here interprocedural optimizations are performed between one.c, two.c and three.c, and
between main.c and four.c, but not between main.c or four.c and the routines on mylib.a.
(The first compilation may generate warnings about undefined symbols, but the
interprocedural optimizations are performed because it is a compile and link step.)

B.2.93.2 When Not To Use -xipo=2 Interprocedural Analysis
The compiler tries to perform whole-program analysis and optimizations as it works with the
set of object files in the link step. The compiler makes the following two assumptions for any
function (or subroutine) foo() defined in this set of object files:
■ foo() is not called explicitly by another routine that is defined outside this set of object files

at runtime.

B.2 The ccOptions

Sun Studio 12: C User's Guide •268

■ The calls to foo() from any routine in the set of object files are not interposed upon by a
different version of foo() defined outside this set of object files.

Do not compile with either -xipo=1 or -xipo=2, if assumption 2 is not true.

As an example, consider interposing on the function malloc() with your own version and
compiling with -xipo=2. Consequently, all the functions in any library that reference malloc()
that are linked with your code have to be compiled with -xipo=2 also and their object files need
to participate in the link step. Since this might not be possible for system libraries, do not
compile your version of malloc with -xipo=2.

As another example, suppose that you build a shared library with two external calls, foo() and
bar() inside two different source files. Furthermore, suppose that bar() calls foo(). If there is a
possibility that foo() could be interposed at runtime, then do not compile the source file for
foo() or for bar() with -xipo=1 or -xipo=2. Otherwise, foo() could be inlined into bar(), which
could cause incorrect results.

B.2.94 -xipo_archive=[a]
The -xipo_archive option enables the compiler to optimize object files that are passed to the
linker with object files that were compiled with -xipo and that reside in the archive library (.a)
before producing an executable. Any object files contained in the library that were optimized
during the compilation are replaced with their optimized version.

a is one of the following:

TABLE B–25 The -xipo_archiveFlags

Value Meaning

writeback The compiler optimizes object files passed to the linker with object files
compiled with -xipo that reside in the archive library (.a) before
producing an executable. Any object files contained in the library that
were optimized during the compilation are replaced with an optimized
version.

For parallel links that use a common set of archive libraries, each link
should create its own copy of archive libraries to be optimized before
linking.

B.2 The ccOptions

Appendix B • C Compiler Options Reference 269

TABLE B–25 The -xipo_archive Flags (Continued)
Value Meaning

readonly The compiler optimizes object files passed to the linker with object files
compiled with -xipo that reside in the archive library (.a) before
producing an executable.

The option -xipo_archive=readonly enables cross-module inlining and
interprocedural data flow analysis of object files in an archive library
specified at link time. However, it does not enable cross-module
optimization of the archive library's code except for code that has been
inserted into other modules by cross module inlining.

To apply cross-module optimization to code within an archive library,
-xipo_archive=writeback is required. Note that doing so modifies the
contents of the archive library from which the code was extracted.

none This is the default. There is no processing of archive files. The compiler
does not apply cross-module inlining or other cross-module
optimizations to object files compiled using -xipo and extracted from an
archive library at link time. To do that, both -xipo and either
-xipo_archive=readonly or -xipo_archive=writeback must be
specified at link time.

If you do not specify a setting for -xipo_archive, the compiler sets it to -xipo_archive=none.

It is illegal to specify -xipo_archive without a flag.

B.2.95 -xjobs=n
(SPARC) Specify the -xjobs option to set how many processes the compiler creates to complete
its work. This option can reduce the build time on a multi-cpu machine. Currently, -xjobs
works only with the -xipo option. When you specify -xjobs=n, the interprocedural optimizer
uses n as the maximum number of code generator instances it can invoke to compile different
files.

Generally, a safe value for n is 1.5 multiplied by the number of available processors. Using a
value that is many times the number of available processors can degrade performance because
of context switching overheads among spawned jobs. Also, using a very high number can
exhaust the limits of system resources such as swap space.

You must always specify -xjobs with a value. Otherwise an error diagnostic is issued and
compilation aborts.

Multiple instances of -xjobs on the command line override each other until the right-most
instance is reached.

The following example compiles more quickly on a system with two processors than the same
command without the -xjobs option.

B.2 The ccOptions

Sun Studio 12: C User's Guide •270

example% cc -xipo -xO4 -xjobs=3 t1.c t2.c t3.c

It is illegal to specify -xipo_archive without a flag.

B.2.96 -xldscope={v}
Specify the -xldscope option to change the default linker scoping for the definition of extern
symbols. Changing the default can result in faster and safer shared libraries because the
implementation is better hidden.

v must be one of the following:

TABLE B–26 The -xldscopeFlags

Flag Meaning

global Global linker scoping is the least restrictive linker scoping. All
references to the symbol bind to the definition in the first dynamic
module that defines the symbol. This linker scoping is the current
linker scoping for extern symbols.

symbolic Symbolic linker scoping and is more restrictive than global linker
scoping. All references to the symbol from within the dynamic
module being linked bind to the symbol defined within the module.
Outside of the module, the symbol appears as though it were global.
This linker scoping corresponds to the linker option -Bsymbolic. See
ld(1) for more information on the linker.

hidden Hidden linker scoping is more restrictive than symbolic and global
linker scoping. All references within a dynamic module bind to a
definition within that module. The symbol will not be visible outside
of the module.

If you do not specify -xldscope, the compiler assumes -xldscope=global. The compiler issues
an error if you specify -xldscope without an argument. Multiple instances of this option on the
command line override each other until the rightmost instance is reached.

If you intend to allow a client to override a function in a library, you must be sure that the
function is not generated inline during the library build. The compiler inlines a function if you
specify the function name with -xinline, if you compile at -xO4 or higher in which case
inlining can happen automatically, if you use the inline specifier, if you use the inline pragma, or
if you are using cross-file optimization.

For example, suppose library ABC has a default allocator function that can be used by library
clients, and is also used internally in the library:

void* ABC_allocator(size_t size) { return malloc(size); }

B.2 The ccOptions

Appendix B • C Compiler Options Reference 271

If you build the library at -xO4 or higher, the compiler inlines calls to ABC_allocator that occur
in library components. If a library client wants to replace ABC_allocator with a customized
version, the replacement will not occur in library components that called ABC_allocator. The
final program will include different versions of the function.

Library functions declared with the __hidden or __symbolic specifiers can be generated inline
when building the library. They are not supposed to be overridden by clients. See “2.2 Linker
Scoping Specifiers” on page 35.

Library functions declared with the __global specifier, should not be declared inline, and
should be protected from inlining by use of the -xinline compiler option.

See also -xinline, -xO, -xcrossfile, #pragma inline

B.2.97 -xlibmieee

Forces IEEE 754 style return values for math routines in exceptional cases. In such cases, no
exception message is printed, and you should not rely on errno.

B.2.98 -xlibmil

Inlines some library routines for faster execution. This option selects the appropriate assembly
language inline templates for the floating-point option and platform for your system.

-xlibmil inlines a function regardless of any specification of the function as part of the
-xinline flag.

However, these substitutions can cause the setting of errno to become unreliable. If your
program depends on the value of errno, avoid this option. See also “2.10 The Value of errno”
on page 54.

B.2.99 -xlibmopt

Enables the compiler to use a library of optimized math routines. You must use default
rounding mode by specifying -fround=nearest when you use this option.

The math routine library is optimized for performance and usually generates faster code. The
results may be slightly different from those produced by the normal math library. If so, they
usually differ in the last bit.

However, these substitutions can cause the setting of errno to become unreliable. If your
program depends on the value of errno, avoid this option. See also “2.10 The Value of errno”
on page 54.

B.2 The ccOptions

Sun Studio 12: C User's Guide •272

The order on the command line for this library option is not significant.

This option is set by the -fast option.

See also: -fast -xnolibmopt

B.2.100 -xlic_lib=sunperf

Links in the Sun supplied performance libraries.

B.2.101 -xlicinfo

This option is silently ignored by the compiler.

B.2.102 -xlinkopt[=level]
(SPARC) Instructs the compiler to perform link-time optimizations on relocatable object files.
These optimizations are performed at link time by analyzing the object binary code. The object
files are not rewritten but the resulting executable code may differ from the original object
codes.

You must use -xlinkopt on at least some of the compilation commands for -xlinkopt to be
useful at link time. The optimizer can still perform some limited optimizations on object
binaries that are not compiled with -xlinkopt.

-xlinkopt optimizes code coming from static libraries that appear on the compiler command
line, but it skips and does not optimize code coming from shared (dynamic) libraries that
appear on the command line. You can also use -xlinkopt when you build shared libraries
(compiling with -G).

level sets the level of optimizations performed, and must be 0, 1, or 2. The optimization levels
are:

TABLE B–27 The -xlinkoptFlags

Flag Meaning

0 The post-optimizer is disabled. (This is the default.)

1 Perform optimizations based on control flow analysis, including instruction cache
coloring and branch optimizations, at link time.

B.2 The ccOptions

Appendix B • C Compiler Options Reference 273

TABLE B–27 The -xlinkopt Flags (Continued)
Flag Meaning

2 Perform additional data flow analysis, including dead-code elimination and
address computation simplification, at link time.

If you compile in separate steps, -xlinkopt must appear on both compile and link steps:

example% cc -c -xlinkopt a.c b.c

example% cc -o myprog -xlinkopt=2 a.o

For a complete list of all compiler options that must be specified at both compile time and at
link time, see Table A–2.

Note that the level parameter is only used when the compiler is linking. In the example above,
the post- optimization level used is 2 even though the object binaries were compiled with an
implied level of 1.

Specifying -xlinkopt without a level parameter implies -xlinkopt=1.

This option is most effective when you use it to compile the whole program, and with profile
feedback. Profiling reveals the most and least used parts of the code and building directs the
optimizer to focus its effort accordingly. This is particularly important with large applications
where optimal placement of code performed at link time can reduce instruction cache misses.
Typically, this compiles as follows:

example% cc -o progt -xO5 -xprofile=collect:prog file.c

example% progt

example% cc -o prog -xO5 -xprofile=use:prog -xlinkopt file.c

For details on using profile feedback, see “B.2.131 -xprofile=p” on page 295.

Do not use the -zcompreloc linker option when you compile with -xlinkopt.

Note that compiling with this option increases link time slightly. Object file sizes also increase,
but the size of the executable remains the same. Compiling with -xlinkopt and -g increases the
size of the executable by including debugging information.

B.2.103 -xloopinfo

(SPARC) Shows which loops are parallelized and which are not. Gives a short reason for not
parallelizing a loop. The -xloopinfo option is valid only if -xautopar, or -xparallel, or
-xexplicitpar is specified; otherwise, the compiler issues a warning.

To achieve faster execution, this option requires a multiprocessor system. On a single-processor
system, the generated code usually runs slower.

B.2 The ccOptions

Sun Studio 12: C User's Guide •274

B.2.104 -xM

Runs only the C preprocessor on the named C programs, requesting that the preprocessor
generate makefile dependencies and send the result to the standard output (see make(1) for
details about make files and dependencies).

For example:

#include <unistd.h>

void main(void)

{}

generates this output:

e.o: e.c

e.o: /usr/include/unistd.h

e.o: /usr/include/sys/types.h

e.o: /usr/include/sys/machtypes.h

e.o: /usr/include/sys/select.h

e.o: /usr/include/sys/time.h

e.o: /usr/include/sys/types.h

e.o: /usr/include/sys/time.h

e.o: /usr/include/sys/unistd.h

If you specify -xM and -xMF, the compiler appends all makefile dependency information to the
file specified with -xMF.

B.2.105 -xM1

Generates makefile dependencies like -xM, but excludes /usr/include files. For example:

more hello.c

#include<stdio.h>

main()

{

(void)printf(“hello\n”);

}

cc– xM hello.c

hello.o: hello.c

hello.o: /usr/include/stdio.h

Compiling with -xM1 does not report header file dependencies:

cc– xM1 hello.c

hello.o: hello.c

-xM1 is not available under -Xs mode.

B.2 The ccOptions

Appendix B • C Compiler Options Reference 275

If you specify -xM1 and -xMF, the compiler appends all makefile dependency information to the
file specified with -xMF.

B.2.106 -xMD

Generates makefile dependencies like -xM but includes compilation. -xMD generates an
output file for the makefile-dependency information based on the input filename but with the
addition of a .d suffix. If you specify -xMD and-xMF, the preprocessor appends all makefile
dependency information to the file specified with -xMF.

B.2.107 -xMF filename

Use this option to specify a file for the makefile-dependency output. There is no way to specify
individual filenames for multiple input files with -xMFon one command line.

B.2.108 -xMMD

Use this option to generate makefile dependencies excluding system header files. This is the
same functionality as -xM1, but includes compilation. -xMMD generates an
output file for the makefile-dependency information based on the input filename but with the
addition of a .d suffix. If you specify -xMF, the compiler uses the filename you provide instead.

B.2.109 -xMerge

Merges data segments into text segments. Data initialized in the object file produced by this
compilation is read-only and (unless linked with ld -N) is shared between processes.

B.2.110 -xmaxopt[=v]
This command limits the level of pragma opt to the level specified. v is one of off, 1, 2, 3, 4, 5.
The default value is -xmaxopt=off which causes pragma opt to be ignored. If you specify
-xmaxopt without supplying an argument, that is the equivalent of specifying -xmaxopt=5.

If you specify both -xO and -xmaxopt, the optimization level set with -xO must not exceed the
-xmaxopt value.

B.2 The ccOptions

Sun Studio 12: C User's Guide •276

B.2.111 -xmemalign=ab
(SPARC) Specify maximum assumed memory alignment and behavior of misaligned data
accesses. There must be a value for both a (alignment) and b (behavior). a specifies the
maximum assumed memory alignment and b specifies the behavior for misaligned memory
accesses. The following table lists the alignment and behavior values for -xmemalign

TABLE B–28 The -xmemalign Alignment and Behavior Flags

a b

1 Assume at most 1 byte alignment. i Interpret access and continue execution.

2 Assume at most 2 byte alignment. s Raise signal SIGBUS.

4 Assume at most 4 byte alignment. f For variants of -xarch=v9 only:

Raise signal SIGBUS for alignments less or equal
to 4,otherwise interpret access and continue
execution. For all other -xarch values, the f flag
is equivalent to i.

8 Assume at most 8 byte alignment.

16 Assume at most 16 byte alignment

You must specify -xmemalign whenever you want to link to an object file that was compiled
with the value of b set to either i or f. For a complete list of all compiler options that must be
specified at both compile time and at link time, see Table A–2.

For memory accesses where the alignment is determinable at compile time, the compiler
generates the appropriate load/store instruction sequence for that alignment of data.

For memory accesses where the alignment cannot be determined at compile time, the compiler
must assume an alignment to generate the needed load/store sequence.

The -xmemalign option allows you to specify the maximum memory alignment of data to be
assumed by the compiler in these indeterminable situations. It also specifies the error behavior
to be followed at run time when a misaligned memory access does take place.

The following default values only apply when no -xmemalign option is present:

■ -xmemalgin=8i for all v8 architectures.
■ -xmemalign=8s for all v9 architectures.

Here is the default when -xmemalign option is present but no value is given:

■ -xmemalign=1i for all -xarch values.

The following table shows how you can use -xmemalign to handle different alignment
situations.

B.2 The ccOptions

Appendix B • C Compiler Options Reference 277

TABLE B–29 Examples of -xmemalign

Command Situation

-xmemalign=1s There are many misaligned accesses so trap handling is too
slow.

-xmemalign=8i There are occasional, intentional, misaligned accesses in code
that is otherwise correct.

-xmemalign=8s There should be no misaligned accesses in the program.

-xmemalign=2s You want to check for possible odd-byte accesses.

-xmemalign=2i You want to check for possible odd-byte access and you want
the program to work.

B.2.112 -xmodel=[a]
(x86) The -xmodel option enables the compiler to modify the form of 64-bit objects for the
Solaris x86 platforms and should only be specified for the compilation of such objects.

This option is valid only when -m64 is also specified on 64–bit enabled x64 processors.

a must be one of the following:

TABLE B–30 The -xmodelFlags

Value Meaning

small This option generates code for the small model in which the
virtual address of code executed is known at link time and all
symbols are known to be located in the virtual addresses in the
range from 0 to 2^31 - 2^24 - 1.

kernel Generates code for the kernel model in which all symbols are
defined to be in the range from 2^64 - 2^31 to 2^64 - 2^24.

medium Generates code for the medium model in which no assumptions
are made about the range of symbolic references to data sections.
Size and address of the text section have the same limits as the
small code model. Applications with large amounts of static data
might require -xmodel=medium when compiling with -m64.

This option is not cumulative so the compiler sets the model value according to the rightmost
instance of -xmodel on the command-line.

If you do not specify -xmodel, the compiler assumes -xmodel=small. Specifying -xmodel
without an argument is an error.

B.2 The ccOptions

Sun Studio 12: C User's Guide •278

It is not necessary to compile all translation units with this option. You can compile select files
as long as you ensure the object you are accessing is within reach.

Be aware that not all Linux system support the medium model.

B.2.113 -xnolib

Does not link any libraries by default; that is, no -l options are passed to ld(1). Normally, the
cc driver passes -lc to ld.

When you use -xnolib, you have to pass all the -l options yourself.

B.2.114 -xnolibmil

Does not inline math library routines. Use it after the –fast option. For example:

% cc– fast– xnolibmil....

B.2.115 -xnolibmopt

Prevents the use of an optimized math library by the compiler by turning off any previously
specified -xlibmopt option. Use this option after -fast which enables use of the optimized
math library by setting -xlibmopt:

% cc -fast -xnolibmopt ...

B.2.116 -xnorunpath

Do not build a runtime search path for shared libraries into the executable.

Normally cc does not pass any -R path to the linker. There are a few options that do pass -R path
to the linker such as -xliclib=sunperf and -xopenmp. The -xnorunpath option can be used to
prevent this.

This option is recommended for building executables that will be shipped to customers who
may have a different path for the shared libraries that are used by the program.

B.2.117 -xO[1|2|3|4|5]
Optimizes the object code; note the uppercase letter O followed by the digit 1, 2, 3, 4, or 5.
Generally, the higher the level of optimization, the better the run-time performance. However,
higher optimization levels can result in longer compilation time and larger executable files.

B.2 The ccOptions

Appendix B • C Compiler Options Reference 279

In a few cases,– xO2 might perform better than the others, and– xO3 might outperform– xO4.
Try compiling with each level to see if you have one of these rare cases.

If the optimizer runs out of memory, it tries to recover by retrying the current procedure at a
lower level of optimization and resumes subsequent procedures at the original level specified in
the command-line option.

The default is no optimization. However, this is only possible if you do not specify an
optimization level. If you specify an optimization level, there is no option for turning
optimization off.

If you are trying to avoid setting an optimization level, be sure not to specify any option that
implies an optimization level. For example, -fast is a macro option that sets optimization at
-xO5. All other options that imply an optimization level give a warning message that
optimization has been set. The only way to compile without any optimization is to delete all
options from the command line or make file that specify an optimization level.

If you use -g and the optimization level is -xO3 or lower, the compiler provides best-effort
symbolic information with almost full optimization. Tail-call optimization and back-end
inlining are disabled.

If you use -g and the optimization level is -xO4 or higher, the compiler provides best-effort
symbolic information with full optimization.

Debugging with -g does not suppress -xOn, but -xOn limits -g in certain ways. For example, the
optimization options reduce the utility of debugging so that you cannot display variables from
dbx, but you can still use the dbx where command to get a symbolic traceback. For more
information, see “Debugging Optimized Code” in Chapter 1 of Debugging a Program With dbx.

If you specify both -xO and -xmaxopt, the optimization level set with -xO must not exceed the
-xmaxopt value.

If you optimize at -xO3 or -xO4 with very large procedures (thousands of lines of code in the
same procedure), the optimizer may require a large amount of virtual memory. In such cases,
machine performance may degrade.

B.2.117.1 Explanation of SPARC Optimizations
The following table describes how they operate on the SPARC platform.

TABLE B–31 The -xO Flags on SPARC Platforms

Value Meaning

-xO1 Does basic local optimization (peephole).

B.2 The ccOptions

Sun Studio 12: C User's Guide •280

TABLE B–31 The -xO Flags on SPARC Platforms (Continued)
Value Meaning

-xO2 Does basic local and global optimization. This is induction variable
elimination, local and global common subexpression elimination,
algebraic simplification, copy propagation, constant propagation,
loop-invariant optimization, register allocation, basic block merging,
tail recursion elimination, dead code elimination, tail call
elimination, and complex expression expansion.

The -xO2 level does not assign global, external, or indirect references
or definitions to registers. It treats these references and definitions as
if they were declared volatile. In general, the -xO2 level results in
minimum code size.

-xO3 Performs like -xO2, but also optimizes references or definitions for
external variables. Loop unrolling and software pipelining are also
performed. This level does not trace the effects of pointer
assignments. When compiling either device drivers, or programs that
modify external variables from within signal handlers, you may need
to use the volatile type qualifier to protect the object from
optimization. In general, the -xO3 level results in increased code size.

-xO4 Performs like -xO3, but also automatically inlines functions
contained in the same file; this usually improves execution speed. If
you want to control which functions are inlined, see “B.2.91
-xinline=list” on page 265.

This level traces the effects of pointer assignments, and usually results
in increased code size.

-xO5 Attempts to generate the highest level of optimization. Uses
optimization algorithms that take more compilation time or that do
not have as high a certainty of improving execution time.
Optimization at this level is more likely to improve performance if it
is done with profile feedback. See “B.2.131 -xprofile=p” on
page 295.

B.2.117.2 Explanation of x86 Optimizations
The following table describes how the optimization levels work on the x86 platform.

TABLE B–32 The -xO Flags on x86 Platforms

Value Meaning

-xO1 Preloads arguments from memory, cross-jumping
(tail-merging), as well as the single pass of the default
optimization.

B.2 The ccOptions

Appendix B • C Compiler Options Reference 281

TABLE B–32 The -xO Flags on x86 Platforms (Continued)
Value Meaning

-xO2 Schedules both high- and low-level instructions and
performs improved spill analysis, loop memory-reference
elimination, register lifetime analysis, enhanced register
allocation, and elimination of global common
subexpressions.

-xO3 Performs loop strength reduction, induction variable
elimination, as well as the optimization done by level 2.

-xO4 Preforms automatic inlining of functions contained in the
same file in addition to performing -xO3 optimizations. This
automatic inlining usually improves execution speed, but
sometimes makes it worse. In general, this level results in
increased code size.

-xO5 Generates the highest level of optimization. Uses
optimization algorithms that take more compilation time or
that do not have as high a certainty of improving execution
time. Some of these include generating local calling
convention entry points for exported functions, further
optimizing spill code and adding analysis to improve
instruction scheduling.

For more information on debugging, see the Sun Studio 12: Debugging a Program With dbx
manual. For more information on optimization, see theSun Studio 12: Performance Analyzer
manual.

See also -xldscope and -xmaxopt.

B.2.118 -xopenmp[=i]
Use the -xopenmp option to enable explicit parallelization with OpenMP directives. To run a
parallelized program in a multithreaded environment, you must set the
OMP_NUM_THREADS environment variable prior to execution.

To enable nested parallelism, you must set the OMP_NESTED environment variable to TRUE.
Nested parallelism is disabled by default.

The following table lists the values for i:

B.2 The ccOptions

Sun Studio 12: C User's Guide •282

TABLE B–33 The -xopenmpFlags

Value Meaning

parallel Enables recognition of OpenMP pragmas. The optimization level
under -xopenmp=parallel is -x03. The compiler changes the
optimization level to-x03 if necessary and issues a warning.

This flag also defines the preprocessor token _OPENMP.

noopt Enables recognition of OpenMP pragmas. The compiler does not
raise the optimization level if it is lower than -O3.

If you explicitly set the optimization lower than -O3, as in cc -O2

-xopenmp=noopt, the compiler issues an error. If you do not specify
an optimization level with -xopenmp=noopt, the OpenMP pragmas
are recognized, the program is parallelized accordingly, but no
optimization is done.

This flag also defines the preprocessor token _OPENMP.

none This flag is the default and disables recognition of OpenMP pragmas,
makes no change to the optimization level of your program, and does
not predefine any preprocessor tokens.

If you specify -xopenmp, but do not include a value, the compiler assumes -xopenmp=parallel.
If you do not specify -xopenmp, the compiler assumes -xopenmp=none.

If you are debugging an OpenMP program with dbx, compile with -g and -xopenmp=noopt so
you can breakpoint within parallel regions and display the contents of variables.

Note – Do not specify -xopenmp, with either -xexplicitpar, or -xparallel.

The default for -xopenmp might change in future releases. You can avoid warning messages by
explicitly specifying an appropriate optimization.

If you use -xopenmp while building any .so, you must use -xopenmp when linking the
executable, and the compiler of the executable must not be any older than the compiler that
built the .so with -xopenmp. This is especially important when you compile libraries that
contain OpenMP directives. For a complete list of all compiler options that must be specified at
both compile time and at link time, see Table A–2.

Make sure that the latest patch of the OpenMP runtime library, libmtsk.so, is installed on the
system for best performance.

For more information that is specific to the C implementation of OpenMP, see “3.2 Parallelizing
for OpenMP” on page 62.

For information on OpenMP, see the Sun Studio 12: OpenMP API User’s Guide.

B.2 The ccOptions

Appendix B • C Compiler Options Reference 283

B.2.119 -xP

The compiler performs only syntax and semantic checking on the source file in order to print
prototypes for all K&R C functions. This option does not produce any object or executable
code. For example, specifying -xP with the following source file,

f()

{

}

main(argc,argv)

int argc;

char *argv[];

{

}

produces this output:

int f(void);

int main(int, char **);

B.2.120 -xpagesize=n
Sets the preferred page size for the stack and the heap.

The n value must be one of the following: 4k, 8K, 64K, 512K, 2M, 4M, 32M, 256M, 2G, 16G, or
default. If you do not specify a valid page size, the request is silently ignored at run-time.

You must specify a valid page size for the target platform.

Use the getpagesize(3C) command on the Solaris operating system to determine the number
of bytes in a page. The Solaris operating system offers no guarantee that the page size request
will be honored. You can use pmap(1) or meminfo(2) to determine page size of the target
platform.

You can use pmap(1) or meminfo(2) to determine page size of the target platform.

The -xpagesize option has no effect unless you use it at compile time and at link time. For a
complete list of all compiler options that must be specified at both compile time and at link
time, see Table A–2.

Note – This feature is not available on the Solaris 8 operating system. A program compiled with
this option will not link on the Solaris 8 operating system.

If you specify -xpagesize=default, the Solaris operating system sets the page size.

B.2 The ccOptions

Sun Studio 12: C User's Guide •284

Compiling with this option has the same effect as setting the LD_PRELOAD environment variable
to mpss.so.1 with the equivalent options, or running the Solaris command ppgsz(1) with the
equivalent options before running the program. See the Solaris man pages for details.

This option is a macro for -xpagesize_heap and -xpagesize_stack. These two options accept
the same arguments as -xpagesize: 4k, 8K, 64K, 512K, 2M, 4M, 32M, 256M, 2G, 16G, or default.
You can set them both with the same value by specifying -xpagesize or you can specify them
individually with different values.

B.2.121 -xpagesize_heap=n
Set the page size in memory for the heap.

The value for n must be one of the following: 4k, 8K, 64K, 512K, 2M, 4M, 32M, 256M, 2G, 16G, or
default. If you do not specify a valid page size, the request is silently ignored at run-time.

Use the getpagesize(3C) command on the Solaris operating system to determine the number
of bytes in a page. The Solaris operating system offers no guarantee that the page size request
will be honored. You can use pmap(1) or meminfo(2) to determine page size of the target
platform.

You can use pmap(1) or meminfo(2) to determine page size at the target platform.

If you specify -xpagesize_heap=default, the Solaris operating system sets the page size.

Compiling with this option has the same effect as setting the LD_PRELOAD environment variable
to mpss.so.1 with the equivalent options, or running the Solaris command ppgsz(1) with the
equivalent options before running the program. See the Solaris man pages for details.

The -xpagesize_heap option has no effect unless you use it at compile time and at link time.
For a complete list of all compiler options that must be specified at both compile time and at
link time, see Table A–2.

Note – This feature is not available on the Solaris 8 operating system. A program compiled with
this option will not link on the Solaris 8 operating system.

B.2.122 -xpagesize_stack=n
Set the page size in memory for the stack.

The value for n must be one of the following: 8K, 64K, 512K, 4M, 32M, 256M, 2G, 16G, or default. If
you do not specify a valid page size, the request is silently ignored at run-time.

B.2 The ccOptions

Appendix B • C Compiler Options Reference 285

Use the getpagesize(3C) command on the Solaris operating system to determine the number
of bytes in a page. The Solaris operating system offers no guarantee that the page size request
will be honored. You can use pmap(1) or meminfo(2) to determine page size of the target
platform.

If you specify -xpagesize_stack=default, the Solaris operating system sets the page size.

Compiling with this option has the same effect as setting the LD_PRELOAD environment variable
to mpss.so.1 with the equivalent options, or running the Solaris command ppgsz(1) with the
equivalent options before running the program. See the Solaris man pages for details.

The -xpagesize_stack option has no effect unless you use it at compile time and at link time.
For a complete list of all compiler options that must be specified at both compile time and at
link time, see Table A–2.

Note – This feature is not available on the Solaris 8 operating system. A program compiled with
this option will not link on the Solaris 8 operating system.

B.2.123 -xparallel

(SPARC) Obsolete, do not use. Use -xopenmp instead.

Note – -xparallel does not accept OpenMP parallelization directives. However, the
Sun-specific MP pragmas have been deprecated and are no longer supported. The OpenMP
API is the preferred and supported parallelization model. See the Sun Studio 12: OpenMP API
User’s Guide for migration information to the directives of the standard.

Parallelizes loops both automatically by the compiler and explicitly specified by the
programmer. The -xparallel option is a macro, and is equivalent to specifying all three of
-xautopar, -xdepend, and -xexplicitpar. With explicit parallelization of loops, there is a risk
of producing incorrect results. If optimization is not at -xO3 or higher, optimization is raised to
-xO3 and a warning is issued.

Avoid -xparallel if you do your own thread management. Do not use -xparallel if you are
issuing -xopenmp. -xparallel sets -xexplicitpar which should not be used if you specify
-xopenmp.

To get faster code, this option requires a multiprocessor system. On a single-processor system,
the generated code usually runs slower.

If you compile and link in one step, -xparallel links with the microtasking library and the
threads-safe C runtime library. If you compile and link in separate steps, and you compile with
-xparallel, then link with -xparallel. For a complete list of all compiler options that must be
specified at both compile time and at link time, see Table A–2.

B.2 The ccOptions

Sun Studio 12: C User's Guide •286

B.2.124 -xpch=v
This compiler option activates the precompiled-header feature. v can be auto, autofirst,
collect:pch_filename, or use:pch_filename. You can take advantage of this feature through
the -xpch (detailed in “B.2.124 -xpch=v” on page 287) and -xpchstop (detailed in “B.2.125
-xpchstop=[file|<include>]” on page 291) options in combination with the #pragma hdrstop
directive (detailed under “2.8.8 hdrstop” on page 44).

Use the -xpch option to create a precompiled-header file and improve your compilation time.
The precompiled-header file is designed to reduce compile time for applications whose source
files share a common set of include files containing a large amount of source code. A
precompiled header works by collecting information about a sequence of header files from one
source file, and then using that information when recompiling that source file, and when
compiling other source files that have the same sequence of headers. The information that the
compiler collects is stored in a precompiled-header file.

See Also:

■ “B.2.125 -xpchstop=[file|<include>]” on page 291.
■ “2.8.8 hdrstop” on page 44.

B.2.124.1 Creating a Precompiled-Header File Automatically
You can let the compiler generate the precompiled- header file for you automatically. Choose
between one of the following two ways to do this. One way is for the compiler to create the
precompiled-header file from the first include file it finds in the source file. The other way is for
the compiler to select from the set of include files found in the source file starting with the first
include file and extending through a well- defined point that determines which include file is
the last one. Use one of the following two flags to determine which method the compiler uses to
automatically generate a precompiled header:

TABLE B–34 The -xpchFlags

Flag Meaning

-xpch=auto The contents of the precompiled-header file is based on the
longest viable prefix (see the following section for an
explanation of how a viable prefix is identified) that the
compiler finds in the source file. This flag produces a
precompiled header file that consists of the largest possible
number of header files.

-xpch=autofirst This flag produces a precompiled-header file that contains only
the first header found in the source file.

B.2 The ccOptions

Appendix B • C Compiler Options Reference 287

B.2.124.2 Creating a Precompiled-Header File Manually
If you decide to create your precompiled-header file manually, you must start by first using
-xpch, and specifying the collect mode. The compilation command that specifies
-xpch=collect must only specify one source file. In the following example, the -xpch option
creates a precompiled-header file called myheader.cpch based on the source file a.c:

cc -xpch=collect:myheader a.c

A valid precompiled-header filename always has the suffix .cpch. When you specify
pch_filename, you can add the suffix or let the compiler add it for you. For example, if you
specify cc -xpch=collect:foo a.c, the precompiled-header file is called foo.cpch.

B.2.124.3 How the Compiler Handles an Existing Precompiled-Header File
If the compiler cannot use the precompiled-header file, under -xpch=auto and
-xpch=autofirst, it generates a new precompiled-header file. If the compiler cannot use the
precompiled-header file under -xpch=use, a warning is issued and the compilation is done
using the real headers.

B.2.124.4 Directing the Compiler to Use a Specific Precompiled-Header File
You can also direct the compiler to use a specific precompiled header. Specify
-xpch=use:pch_filename to do this. You can specify any number of source files with the same
sequence of include files as the source file that was used to create the precompiled-header file.
For example, your command in use mode could look like this: cc -xpch=use:foo.cpch foo.c
bar.c foobar.c.

You should only use an existing precompiled-header file if the following are true. If any of the
following is not true, you should recreate the precompiled-header file:

■ The compiler that you are using to access the precompiled-header file is the same as the
compiler that created the precompiled-header file. A precompiled-header file created by one
version of the compiler may not be usable by another version of the compiler.

■ Except for the -xpch option, the compiler options you specify with -xpch=use must match
the options that were specified when the precompiled-header file was created.

■ The set of included headers you specify with -xpch=use is identical to the set of headers that
were specified when the precompile header was created.

■ The contents of the included headers that you specify with -xpch=use is identical to the
contents of the included headers that were specified when the precompiled header was
created.

■ The current directory (that is, the directory in which the compilation is occurring and
attempting to use a given precompiled-header file) is the same as the directory in which the
precompiled-header file was created.

B.2 The ccOptions

Sun Studio 12: C User's Guide •288

■ The initial sequence of pre-processing directives, including #include directives, in the file
you specified with -xpch=collect are the same as the sequence of pre-processing directives
in the files you specify with -xpch=use.

B.2.124.5 The Viable Prefix
In order to share a precompiled-header file across multiple source files, those source files must
share a common set of include files as their initial sequence of tokens. A token is a keyword,
name or punctuation mark. Comments and code that is excluded by #if directives are not
recognized by the compiler as tokens. This initial sequence of tokens is known as the viable
prefix. In other words, the viable prefix is the top portion of the source file that is common to all
source files. The compiler uses this viable prefix as the basis for creating a precompiled-header
file and thereby determining which header files from the source are pre-compiled.

The viable prefix that the compiler finds during the current compilation must match the viable
prefix that it used to create the precompiled-header file. In other words, viable prefix must be
interpreted consistently across all the source files that use the same precompiled-header file.

The viable prefix of a source file can only be comprised of comments and any of the following
pre-processor directives:

#include

#if/ifdef/ifndef/else/elif/endif

#define/undef

#ident (if identical, passed through as is)

#pragma (if identical)

Any of these may reference macros. The #else, #elif, and #endif directives must match
within the viable prefix. Comments are ignored.

The compiler determines the end point of the viable prefix automatically when you specify
-xpch=auto or -xpch=autofirst and is defined as follows. For -xpch=collect or -xpch=use,
the viable prefix ends with a #pragma hdrstop.

■ The first declaration/definition statement
■ The first #line directive
■ A #pragma hdrstop directive
■ After the named include file if you specify -xpch=auto and -xpchstop

■ The first include file if you specify -xpch=autofirst

B.2 The ccOptions

Appendix B • C Compiler Options Reference 289

Note – An end point within a conditional statement generates a warning and disables the
automatic creation of a precompiled-header file. Also, if you specify both the #pragma
hdrstop and the -xpchstop option, then the compiler uses the earlier of the two stop points
to terminate the viable prefix.

Within the viable prefix of each file that shares a precompiled-header file, each corresponding
#define and #undef directive must reference the same symbol (in the case of #define, each one
must reference the same value). Their order of appearance within each viable prefix must be the
same as well. Each corresponding pragma must also be the same and appear in the same order
across all the files sharing a precompiled header.

B.2.124.6 Screening a Header File for Problems
What makes a header file precompilable? A header file is precompilable when it is interpreted
consistently across different source files. Specifically, when it contains only complete
declarations. That is, a declaration in any one file must stand alone as a valid declaration.
Incomplete type declarations, such as struct S;, are valid declarations. The complete type
declaration can appear in some other file. Consider these example header files:

file a.h

struct S {

#include "x.h" /* not allowed */

};

file b.h

struct T; // ok, complete declaration

struct S {

int i;

[end of file, continued in another file] /* not allowed*/

A header file that is incorporated into a precompiled-header file must not violate the following.
The results of compiling a program that violates any of these constraints is undefined.
■ The header file must not use __DATE__ and __TIME__.
■ The header file must not contain #pragma hdrstop.

B.2.124.7 The Precompiled-Header File Cache
When the compiler creates a precompiled-header file automatically, the compiler writes it to
the SunWS_cache directory. This directory always resides in the location where the object file is
created. Updates to the file are preformed under a lock so that it works properly under dmake.

If you need to force the compiler to rebuild automatically-generated precompiled-header files,
you can clear the precompiled-header file cache-directory with the CCadmin tool. See the
CCadmin(1) man page for more information.

B.2 The ccOptions

Sun Studio 12: C User's Guide •290

B.2.124.8 Warnings
■ Do not specify conflicting -xpch flags on the command line. For example, specifying both

-xpch=collect and -xpch=auto, or specifying both -xpch=autofirst with
-xpchstop=<include> generates an error.

■ If you specify -xpch=autofirst or you specify -xpch=auto without -xpchstop, any
declaration, definition, or #line directive that appears prior to the first include file, or
appears prior to the include file that is specified with -xpchstop for -xpch=auto, generates a
warning and disables the automatic generation of the precompiled-header file.

■ A #pragma hdrstop before the first include file under -xpch=autofirst or -xpch=auto
disables the automatic generation of the precompiled-header file.

B.2.124.9 Precompiled-Header File Dependencies and make Files
The compiler generates dependency information for precompiled-header files when you
specify -xpch=collect. You need to create the appropriate rules in your make files to take
advantage of these dependencies. Consider this sample make file:

%.o : %.c shared.cpch

$(CC) -xpch=use:shared -xpchstop=foo.h -c $<

default : a.out

foo.o + shared.cpch : foo.c

$(CC) -xpch=collect:shared -xpchstop=foo.h foo.c -c

a.out : foo.o bar.o foobar.o

$(CC) foo.o bar.o foobar.o

clean :

rm -f *.o shared.cpch .make.state a.out

These make rules, along with the dependencies generated by the compiler, force a manually
created precompiled- header file to be recreated if any source file you used with -xpch=collect,
or any of the headers that are part of the precompiled-header file, have changed. This prevents
the use of an out of date precompiled-header file.

You do not have to create any additional make rules in your makefiles for -xpch=auto or
-xpch=autofirst.

B.2.125 -xpchstop=[file|<include>]
Use the -xpchstop=file option to specify the last include file of the viable prefix for the
precompiled-header file. Using -xpchstop on the command line is equivalent to placing a
hdrstop pragma after the first include-directive that references file in each of the source files
that you specify with the cc command.

B.2 The ccOptions

Appendix B • C Compiler Options Reference 291

Use -xpchstop=<include> with -xpch-auto to create a precompiled-header file that is based
on header files up through and including <include>. This flag overrides the default -xpch=auto
behavior of using all header files that are contained in the entire viable prefix.

In the following example, the -xpchstop option specifies that the viable prefix for the
precompiled-header file ends with the include of projectheader.h. Therefore,
privateheader.h is not a part of the viable prefix.

example% cat a.c

#include <stdio.h>

#include <strings.h>

#include "projectheader.h"
#include "privateheader.h"
.

.

.

example% cc -xpch=collect:foo.cpch a.c -xpchstop=projectheader.h -c

See also -xpch.

B.2.126 -xpentium

(x86) Generates code for the Pentium processor.

B.2.127 -xpg

Prepares the object code to collect data for profiling with gprof(1). It invokes a runtime
recording mechanism that produces a gmon.out file at normal termination.

Note – There is no advantage for -xprofile if you specify -xpg. The two do not prepare or use
data provided by the other.

Profiles are generated by using prof(1) or gprof(1) on 64 bit Solaris platforms or just gprof on
32 bit Solaris platforms and include approximate user CPU times. These times are derived from
PC sample data (see pcsample(2)) for routines in the main executable and routines in shared
libraries specified as linker arguments when the executable is linked. Other shared libraries
(libraries opened after process startup using dlopen(3DL)) are not profiled.

On 32 bit Solaris systems, profiles generated using prof(1) are limited to routines in the
executable. 32 bit shared libraries can be profiled by linking the executable with -xpg and using
gprof(1).

The Solaris 10 software does not include system libraries compiled with -p. As a result, profiles
collected on Solaris 10 platforms do not include call counts for system library routines.

B.2 The ccOptions

Sun Studio 12: C User's Guide •292

If you specify -xpg at compile time, you must also specify it at link time. See “A.1.2
Compile-Time and Link-Time Options” on page 205 for a complete list of options that must be
specified at both compile time and link time.

B.2.128 -xprefetch[=val[,val]]
(SPARC) Enable prefetch instructions on those architectures that support prefetch.

Explicit prefetching should only be used under special circumstances that are supported by
measurements.

val must be one of the following:

TABLE B–35 The -xprefetchFlags

Flag Meaning

latx:factor Adjust the compiler’s assumed prefetch-to-load and prefetch-to-store latencies
by the specified factor. You can only combine this flag with -xprefetch=auto.
See “B.2.128.1 Prefetch Latency Ratio” on page 293

[no%]auto [Disable] Enable automatic generation of prefetch instructions

[no%]explicit (SPARC) [Disable] Enable explicit prefetch macros

yes Obsolete - do not use. Use -xprefetch=auto,explicit instead.

no Obsolete - do not use. Use -xprefetch=no%auto,no%explicit instead.

The default is -xprefetch=auto,explicit. This default adversely affects applications that have
essentially non-linear memory access patterns. Specify -xprefetch=no%auto,no%explicit to
override the default.

The sun_prefetch.h header file provides the macros that you can use to specify explicit
prefetch instructions. The prefetches are approximately at the place in the executable that
corresponds to where the macros appear.

B.2.128.1 Prefetch Latency Ratio
The prefetch latency is the hardware delay between the execution of a prefetch instruction and
the time the data being prefetched is available in the cache.

The factor must be a positive number of the form n.n.

The compiler assumes a prefetch latency value when determining how far apart to place a
prefetch instruction and the load or store instruction that uses the prefetched data. The
assumed latency between a prefetch and a load may not be the same as the assumed latency
between a prefetch and a store.

B.2 The ccOptions

Appendix B • C Compiler Options Reference 293

The compiler tunes the prefetch mechanism for optimal performance across a wide range of
machines and applications. This tuning may not always be optimal. For memory-intensive
applications, especially applications intended to run on large multiprocessors, you may be able
to obtain better performance by increasing the prefetch latency values. To increase the values,
use a factor that is greater than 1 (one). A value between .5 and 2.0 will most likely pro vide the
maximum performance.

For applications with data sets that reside entirely within the external cache, you may be able to
obtain better performance by decreasing the prefetch latency values. To decrease the values, use
a factor that is less than one.

To use the latx:factor suboption, start with a factor value near 1.0 and run performance tests
against the application. Then increase or decrease the factor, as appropriate, and run the
performance tests again. Continue adjusting the factor and running the performance tests until
you achieve optimum performance. When you increase or decrease the factor in small steps,
you will see no performance difference for a few steps, then a sudden difference, then it will level
off again.

B.2.129 -xprefetch_auto_type=a
Where a is [no%]indirect_array_access.

Use this option to determine whether or not the compiler generates indirect prefetches for the
loops indicated by the option -xprefetch_level in the same fashion the prefetches for direct
memory accesses are generated.

If you do not specify a setting for -xprefetch_auto_type, the compiler sets it to
-xprefetch_auto_type=no%indirect_array_access.

Options such as -xalias_level can affect the aggressiveness of computing the indirect
prefetch candidates and therefore the aggressiveness of the automatic indirect prefetch
insertion due to better memory alias disambiguation information.

B.2.130 -xprefetch_level=l
(SPARC) Use the -xprefetch_level option to control the aggressiveness of automatic
insertion of prefetch instructions as determined with -xprefetch=auto. l must be 1, 2, or 3. The
compiler becomes more aggressive, or in other words, introduces more prefetches with each,
higher, level of -xprefetch_level.

The appropriate value for the -xprefetch_level depends on the number of cache misses the
application may have. Higher -xprefetch_level values have the potential to improve the
performance of applications.

B.2 The ccOptions

Sun Studio 12: C User's Guide •294

This option is effective only when it is compiled with -xprefetch=auto, with optimization level
3 or greater, and generate code for a platform that supports prefetch (v8plus, v8plusa, v9, v9a,
v9b, generic64, native64).

-xprefetch_level=1 enables automatic generation of prefetch instructions.
-xprefetch_level=2 enables additional generation beyond level 1 and -xprefetch_level=3

enables additional generation beyond level 2.

The default is -xprefetch_level=1 when you specify -xprefetch=auto.

B.2.131 -xprofile=p
Use this option to collect and save execution-frequency data so you can then use the data in
subsequent runs to improve performance. This option is only valid when you specify
optimization at level -xO2 or above.

You must specify -xprofile at compile time as well as link time. For a complete list of all
compiler options that must be specified at both compile time and at link time, see Table A–2.

Compiling with high optimization levels (for example -xO5) is enhanced by providing the
compiler with runtime-performance feedback. In order to produce runtime-performance
feedback, you must compile with -xprofile=collect, run the executable against a typical data
set, and then recompile at the highest optimization level and with -xprofile=use.

Profile collection is safe for multithreaded applications. That is, profiling a program that does its
own multitasking (-mt) produces accurate results.

p must be collect[:name], use[:name], or tcov.

■ collect[:name]
Collects and saves execution-frequency data for later use by the optimizer with
-xprofile=use. The compiler generates code to measure statement execution-frequency.

Note – Do not specify -xprofile=collect when you build shared libraries on Linux.

The name is the name of the program that is being analyzed. This name is optional. If name
is not specified, a.out is assumed to be the name of the executable.

You can set the environment variables SUN_PROFDATA and SUN_PROFDATA_DIR to control
where a program compiled with -xprofile=collect stores the profile data. If set, the
-xprofile=collect data is written to SUN_PROFDATA_DIR/SUN_PROFDATA.

These environment variables similarly control the path and names of the profile data files
written by tcov, as described in the tcov(1) man page.

B.2 The ccOptions

Appendix B • C Compiler Options Reference 295

If these environment variables are not set, the profile data is written to
name.profile/feedback in the current directory, where name is the name of the executable
or the name specified in the -xprofile=collect:name flag. -xprofile does not append
.profile to name if name already ends in .profile. If you run the program several times,
the executions-frequency data accumulates in the feedback file; that is, output from prior
executions is not lost.

If you are compiling and linking in separate steps, make sure that any object files compiled
with -xprofile=collect are also linked with -xprofile=collect.

■ use[:name]

The program is optimized by using the execution-frequency data generated and saved in the
feedback files from a previous execution of the program that was compiled with–
xprofile=collect.

The name is the name of the program that is being analyzed. This name is optional. If name
is not specified, a.out is assumed to be the name of the executable.

Except for the -xprofile option which changes from -xprofile=collect to
-xprofile=use, the source files and other compiler options must be exactly the same as
those used for the compilation that created the compiled program which in turn generated
the feedback file. The same version of the compiler must be used for both the collect build
and the use build as well. If compiled with -xprofile=collect:name, the same program
name name must appear in the optimizing compilation: -xprofile=use:name.

The association between an object file and its profile data is based on the UNIX pathname of
the object file when it is compiled with -xprofile=collect. In some circumstances, the
compiler will not associate an object file with its profile data: the object file has no profile
data because it was not previously compiled with -xprofile=collect, the object file is not
linked in a program with -xprofile=collect, the program has never been executed.

The compiler can also become confused if an object file was previously compiled in a
different directory with -xprofile=collect and this object file shares a common basename
with other object files compiled with -xprofile=collect but they cannot be uniquely
identified by the names of their containing directories. In this case, even if the object file has
profile data, the compiler will not be able to find it in the feedback directory when the object
file is recompiled with -xprofile=use.

All of these situations cause the compiler to lose the association between an object file and its
profile data. Therefore, if an object file has profile data but the compiler is unable to
associate it with the object file’s pathname when you specify -xprofile=use, use the
-xprofile_pathmap option to identify correct directory. See “B.2.133 -xprofile_pathmap”
on page 298.

■ tcov

Basic block coverage analysis using “new” style tcov.

B.2 The ccOptions

Sun Studio 12: C User's Guide •296

The -xprofile=tcov option is the new style of basic block profiling for tcov. It has similar
functionality to the -xa option, but correctly collects data for programs that have source
code in header files. See “B.2.66 -xa” on page 241 for information on the old style of
profiling, the tcov(1) man page, and Program Performance Analysis Tools for more details.
Code instrumentation is performed similarly to that of the -xa option, but .d files are no
longer generated. Instead, a single file is generated, the name of which is based on the final
executable. For example, if the program is run out of /foo/bar/myprog.profile, the data
file is stored in /foo/bar/myprog.profile/myprog.tcovd.
The -xprofile=tcov and the -xa options are compatible in a single executable. That is,
you can link a program that contains some files that have been compiled with
-xprofile=tcov, and others with -xa. You cannot compile a single file with both options.
When running tcov, you must pass it the -x option to make it use the new style of data. If
not, tcov uses the old .d files, if any, by default for data, and produces unexpected output.
Unlike the -xa option, the TCOVDIR environment variable has no effect at compile-time.
However, its value is used at program runtime. See tcov(1) and Program Performance
Analysis Tools for more details.

Note – tcov’s code coverage report can be unreliable if there is inlining of routines due to
-xO4 or -xinline.

When you use -xprofile=collect to compile a program for profile collection and
-xprofile=use to compile a program for profile feedback, the source files and compiler options
other than -xprofile=collect and -xprofile=use must be identical in both compilations.

The profile feedback directory names specified by the -xprofile=use:name option are
accumulated from all instances of the option in a single invocation of the compiler. For
example, assume that profile directories a.profile, b.profile and c.profile are created as a
result of executing profiled binaries named a, b, and c respectively.

cc -O -c foo.c -xprofile=use:a -xprofile=use:b -xprofile=use:c

All three profile directories are used. Any valid profile feedback data pertaining to a particular
object file is accumulated from the specified feedback directories when the object file is
compiled.

If both -xprofile=collect and -xprofile=use are specified in the same command line, the
rightmost -xprofile option in the command line is applied as follows:

■ If the rightmost -xprofile option is -xprofile=use, all profile feedback directory names
specified by the -xprofile=use options are used for feedback-directed optimization, and
the previous -xprofile=collect options are ignored.

B.2 The ccOptions

Appendix B • C Compiler Options Reference 297

■ If the right-most -xprofile option is -xprofile=collect, all profile feedback directory
names specified by -xprofile=use options are ignored, and instrumentation for profile
generation is enabled.

See also: -xhwcprof, -xprofile_ircache, -xprofile_pathmap

B.2.132 -xprofile_ircache[=path]
(SPARC) Use -xprofile_ircache[=path] with -xprofile=collect|use to improve
compilation time during the use phase by reusing compilation data saved from the collect
phase.

With large programs, compilation time in the use phase can improve significantly because the
intermediate data is saved. Note that the saved data could increase disk space requirements
considerably.

When you use -xprofile_ircache[=path], path overrides the location where the cached files
are saved. By default, these files are saved in the same directory as the object file. Specifying a
path is useful when the collect and use phases happen in two different directories. Here’s a
typical sequence of commands:

example% cc -xO5 -xprofile=collect -xprofile_ircache t1.c t2.c

example% a.out // run collects feedback data

example% cc -xO5 -xprofile=use -xprofile_ircache t1.c t2.c

B.2.133 -xprofile_pathmap

(SPARC) Use the -xprofile_pathmap=collect_prefix:use_prefix option when you are also
specifying the -xprofile=use command. Use -xprofile_pathmap when both of the following
are true and the compiler is unable to find profile data for an object file that is compiled with
-xprofile=use.

■ You are compiling the object file with -xprofile=use in a directory that is different from
the directory in which the object file was previously compiled with -xprofile=collect.

■ Your object files share a common basename in the profile but are distinguished from each
other by their location in different directories.

The collect-prefix is the prefix of the UNIX pathname of a directory tree in which object files
were compiled using -xprofile=collect.

The use-prefix is the prefix of the UNIX pathname of a directory tree in which object files are to
be compiled using -xprofile=use.

B.2 The ccOptions

Sun Studio 12: C User's Guide •298

If you specify multiple instances of -xprofile_pathmap, the compiler processes them in the
order of their occurrence. Each use-prefix specified by an instance of -xprofile_pathmap is
compared with the object file pathname until either a matching use-prefix is identified or the last
specified use-prefix is found not to match the object file pathname.

B.2.134 -xreduction

(SPARC) Turns on reduction recognition during automatic parallelization. -xreduction must
be specified with -xautopar, or -xparallel otherwise the compiler issues a warning.

When reduction recognition is enabled, the compiler parallelizes reductions such as dot
products, maximum and minimum finding. These reductions yield different roundoffs than
obtained by unparallelized code.

B.2.135 -xregs=r[,r…]
Specifies the usage of registers for the generated code.

r is a comma-separated list that consists of one or more of the following: [no%]appl,
[no%]float,[no%]frameptr.

Example: -xregs=appl,no%float

TABLE B–36 The -xregsFlags

Value Meaning

[no%]appl (SPARC) [Does not] Allow the compiler to generate code using the
application registers as scratch registers. The application registers
are:

g2, g3, g4 (on 32–bit platforms)

g2, g3 (on 64–bit platforms)

It is strongly recommended that all system software and libraries be
compiled using -xregs=no%appl. System software (including
shared libraries) must preserve these registers’ values for the
application. Their use is intended to be controlled by the
compilation system and must be consistent throughout the
application.

In the SPARC ABI, these registers are described as application
registers. Using these registers can increase performance because
fewer load and store instructions are needed. However, such use can
conflict with some old library programs written in assembly code.

B.2 The ccOptions

Appendix B • C Compiler Options Reference 299

TABLE B–36 The -xregs Flags (Continued)
Value Meaning

[no%]float (SPARC) [Does not] Allow the compiler to generate code by using
the floating-point registers as scratch registers for integer values.
Use of floating-point values may use these registers regardless of this
option. If you want your code to be free of all references to floating
point registers, you need to use -xregs=no%float and also make
sure your code does not use floating point types in any way.

[no%]frameptr (x86) [Does not] Allow the compiler to use the frame-pointer
register (%ebp on IA32, %rbp on AMD64) as an unallocated
callee-saves register.

Using this register as an unallocated callee-saves register may
improve program run time. However, it also reduces the capacity of
some tools to inspect and follow the stack. This stack inspection
capability is important for system performance measurement and
tuning. Therefor, using this optimization may improve local
program performance at the expense of global system performance.
■ Tools, such as the Performance Analyzer, that dump the stack

for postmortem diagnosis will not work.

■ Debuggers (for example, adb, mdb, dbx) will not be able to dump
the stack or directly pop stack frames.

■ The dtrace performance analysis facility will be unable to
collect information on any frames on the stack before the most
recent frame missing the frame pointer.

■ Posix pthread_cancel will fail trying to find cleanup handlers.

■ C++ exceptions cannot propagate through C functions.
The failures in C++ exceptions occur when a C function that has
lost its frame pointer calls a C++ function that throws an
exception through the C function. Such calls typically occur
when a function accepts a function pointer (for example, qsort)
or when a global function, such as malloc, is interposed upon.
The last two affects listed above may impact the correct
operation of applications. Most application code will not
encounter these problems. Libraries that are developed by using
-xO4, however, need documentation that details the restrictions
of their usage by their clients.
Note: The compiler ignores -xregs=frameptr and issues a
warning
if you also specify -xpg.

The SPARC default is -xregs=appl,float.

B.2 The ccOptions

Sun Studio 12: C User's Guide •300

The x86 default is -xregs=no%frameptr. -xregs=frameptr in included in the expansion of
-fast.

It is strongly recommended that you compile code intended for shared libraries that will link
with applications, with -xregs=no%appl,float. At the very least, the shared library should
explicitly document how it uses the application registers so that applications linking with those
libraries know how to cope with the issue.

For example, an application using the registers in some global sense (such as using a register to
point to some critical data structure) would need to know exactly how a library with code
compiled without -xregs=no%appl is using the application registers in order to safely link with
that library.

B.2.136 -xrestrict[=f]
(SPARC) Treats pointer-valued function parameters as restricted pointers . f is %all, %none, or a
comma-separated list of one or more function names: {%all|%none|fn[,fn...]}.

If a function list is specified with this option, pointer parameters in the specified functions are
treated as restricted; if -xrestrict=%all is specified, all pointer parameters in the entire C file
are treated as restricted. Refer to “3.8.2 Restricted Pointers” on page 80, for more information.

This command-line option can be used on its own, but it is best used with optimization. For
example, the command:

%cc -xO3 -xrestrict=%all prog.c

treats all pointer parameters in the file prog.c as restricted pointers. The command:

%cc -xO3 -xrestrict=agc prog.c

treats all pointer parameters in the function agc in the file prog.c as restricted pointers.

The default is %none; specifying -xrestrict is equivalent to specifying -xrestrict=%all.

B.2.137 -xs

Allows debugging by dbx without object files.

This option causes all the debug information to be copied into the executable. This has little
impact on dbx performance or the run-time performance of the program, but it does take more
disk space.

B.2.138 -xsafe=mem

(SPARC) Allows the compiler to assume no memory protection violations occur.

B.2 The ccOptions

Appendix B • C Compiler Options Reference 301

This option grants permission to use non-faulting load instruction on the SPARC V9
architecture.

Note – Because non-faulting loads do not cause a trap when a fault such as address misalignment
or segmentation violation occurs, you should use this option only for programs in which such
faults cannot occur. Because few programs incur memory-based traps, you can safely use this
option for most programs. Do not use this option for programs that explicitly depend on
memory-based traps to handle exceptional conditions.

This option takes effect only when used with optimization level -xO5 and one of the following
-xarch values: sparc, sparcvis, or sparcvis2 for both -m32 and -m64.

B.2.139 -xsb

Use this option to generates extra symbol table information for the Source Browser. This option
is not valid with the–Xs mode of the compiler.

If you are compiling and linking in separate steps, be sure to specify -xsb in both the compile
step and the link step otherwise you will see error messages from the linker. For a complete list
of all compiler options that must be specified at both compile time and at link time, see
Table A–2.

If you do not use -xsb to link objects that were compiled with -xsb, you limit the source
browser data to those references used by the executable that was created with the link step. Also,
if you do not specify -xsb in separate compile and link steps, some symbol references in the
source browser database may be lost.

By including -xsb in both the compile step and the separate link step, you ensure that all symbol
references in both objects are visible to the source browser when the objects are compiled in
different ways in the same directory and linked with different executables.

B.2.140 -xsbfast

Creates the database for the Source Browser. Does not compile source into an object file. This
option is not valid with the –Xs mode of the compiler.

B.2.141 -xsfpconst

Represents unsuffixed floating-point constants as single precision, instead of the default mode
of double precision. Not valid with -Xc.

B.2 The ccOptions

Sun Studio 12: C User's Guide •302

B.2.142 -xspace

Does no optimizations or parallelization of loops that increase code size.

Example: The compiler will not unroll loops or parallelize loops if it increases code size.

B.2.143 -xstrconst

Inserts string literals into the read-only data section of the text segment instead of the default
data segment. Duplicate strings will be eliminated and the remaining copy shared amongst
references in the code.

B.2.144 -xtarget=t
Specifies the target system for instruction set and optimization.

The value of t must be one of the following: native, generic, native64, generic64,
system-name.

Each specific value for -xtarget expands into a specific set of values for the -xarch, -xchip,
and -xcache options. Use the -xdryrun option to determine the expansion of
-xtarget=native on a running system.

For example, -xtarget=sun4/15 is equivalent to: -xarch=v8a -xchip=micro

-xcache=2/16/1.

Note – The expansion of -xtarget for a specific host platform might not expand to the same
-xarch, -xchip, or -xcache settings as -xtarget=native when compiling on that platform.

TABLE B–37 -xtargetValues for All Platforms

Flag Meaning

native Gets the best performance on the host system.

The compiler generates code for the best performance on the host
system. It determines the available architecture, chip, and cache
properties of the machine on which the compiler is running.

native64 Gets the best performance for 64-bit object binaries on the host
system. The compiler generates 64-bit object binaries optimized for
the host system. It determines the available 64-bit architecture, chip,
and cache properties of the machine on which the compiler is
running.

B.2 The ccOptions

Appendix B • C Compiler Options Reference 303

TABLE B–37 -xtargetValues for All Platforms (Continued)
Flag Meaning

generic This is the default value. Gets the best performance for generic
architecture, chip, and cache.

generic64 Sets the parameters for the best performance of 64-bit object
binaries over most 64-bit platform architectures.

system-name Gets the best performance for the specified system.

Select a system name from the following lists for which represents
the actual system you are targeting.

The performance of some programs may benefit by providing the compiler with an accurate
description of the target computer hardware. When program performance is critical, the proper
specification of the target hardware could be very important. This is especially true when
running on the newer SPARC processors. However, for most programs and older SPARC
processors, the performance gain is negligible and a generic specification is sufficient.

B.2.144.1 -xtargetValues on SPARC Platforms
Compiling for 64-bit Solaris software on SPARC or UltraSPARC V9 is indicated by the -m64
option. If you specify -xtarget with a flag other than native64 or generic64, you must also
specify the -m64 option as follows: -xtarget=ultra... -m64 otherwise the compiler uses a 32-bit
memory model.

TABLE B–38 The -xtargetExpansions on SPARC

-xtarget= -xarch -xchip -xcache

generic generic generic generic

cs6400 v8 super 16/32/4:2048/64/1

entr150 v8 ultra 16/32/1:512/64/1

entr2 v8plusa ultra 16/32/1:512/64/1

entr2/1170 v8plusa ultra 16/32/1:512/64/1

entr2/1200 v8plusa ultra 16/32/1:512/64/1

entr2/2170 v8plusa ultra 16/32/1:512/64/1

entr2/2200 v8plusa ultra 16/32/1:512/64/1

entr3000 v8plusa ultra 16/32/1:512/64/1

entr4000 v8plusa ultra 16/32/1:512/64/1

B.2 The ccOptions

Sun Studio 12: C User's Guide •304

TABLE B–38 The -xtargetExpansions on SPARC (Continued)
-xtarget= -xarch -xchip -xcache

entr5000 v8plusa ultra 16/32/1:512/64/1

entr6000 v8plusa ultra 16/32/1:512/64/1

sc2000 v8 super 16/32/4:2048/64/1

solb6 v8 super 16/32/4:1024/32/1

ss10 v8 super 16/32/4

ss10/20 v8 super 16/32/4

ss10/30 v8 super 16/32/4

ss10/40 v8 super 16/32/4

ss10/402 v8 super 16/32/4

ss10/41 v8 super 16/32/4:1024/32/1

ss10/412 v8 super 16/32/4:1024/32/1

ss10/50 v8 super 16/32/4

ss10/51 v8 super 16/32/4:1024/32/1

ss10/512 v8 super 16/32/4:1024/32/1

ss10/514 v8 super 16/32/4:1024/32/1

ss10/61 v8 super 16/32/4:1024/32/1

ss10/612 v8 super 16/32/4:1024/32/1

ss10/71 v8 super2 16/32/4:1024/32/1

ss10/712 v8 super2 16/32/4:1024/32/1

ss10/hs11 v8 hyper 256/64/1

ss10/hs12 v8 hyper 256/64/1

ss10/hs14 v8 hyper 256/64/1

ss10/hs21 v8 hyper 256/64/1

ss10/hs22 v8 hyper 256/64/1

ss1000 v8 super 16/32/4:1024/32/1

ss20 v8 super 16/32/4:1024/32/1

ss20/151 v8 hyper 512/64/1

ss20/152 v8 hyper 512/64/1

B.2 The ccOptions

Appendix B • C Compiler Options Reference 305

TABLE B–38 The -xtargetExpansions on SPARC (Continued)
-xtarget= -xarch -xchip -xcache

ss20/50 v8 super 16/32/4

ss20/502 v8 super 16/32/4

ss20/51 v8 super 16/32/4:1024/32/1

ss20/512 v8 super 16/32/4:1024/32/1

ss20/514 v8 super 16/32/4:1024/32/1

ss20/61 v8 super 16/32/4:1024/32/1

ss20/612 v8 super 16/32/4:1024/32/1

ss20/71 v8 super2 16/32/4:1024/32/1

ss20/712 v8 super2 16/32/4:1024/32/1

ss20/hs11 v8 hyper 256/64/1

ss20/hs12 v8 hyper 256/64/1

ss20/hs14 v8 hyper 256/64/1

ss20/hs21 v8 hyper 256/64/1

ss20/hs22 v8 hyper 256/64/1

ss4 v8a micro2 8/16/1

ss4/110 v8a micro2 8/16/1

ss4/85 v8a micro2 8/16/1

ss5 v8a micro2 8/16/1

ss5/110 v8a micro2 8/16/1

ss5/85 v8a micro2 8/16/1

ss600/41 v8 super 16/32/4:1024/32/1

ss600/412 v8 super 16/32/4:1024/32/1

ss600/51 v8 super 16/32/4:1024/32/1

ss600/512 v8 super 16/32/4:1024/32/1

ss600/514 v8 super 16/32/4:1024/32/1

ss600/61 v8 super 16/32/4:1024/32/1

ss600/612 v8 super 16/32/4:1024/32/1

sslc v8a micro 2/16/1

B.2 The ccOptions

Sun Studio 12: C User's Guide •306

TABLE B–38 The -xtargetExpansions on SPARC (Continued)
-xtarget= -xarch -xchip -xcache

sslx v8a micro 2/16/1

sslx2 v8a micro2 8/16/1

ssvyger v8a micro2 8/16/1

sun4/15 v8a micro 2/16/1

sun4/30 v8a micro 2/16/1

ultra v8plusa ultra 16/32/1:512/64/1

ultra1/140 v8plusa ultra 16/32/1:512/64/1

ultra1/170 v8plusa ultra 16/32/1:512/64/1

ultra1/200 v8plusa ultra 16/32/1:512/64/1

ultra2 v8plusa ultra2 16/32/1:512/64/1

ultra2/1170 v8plusa ultra 16/32/1:512/64/1

ultra2/1200 v8plusa ultra 16/32/1:1024/64/1

ultra2/1300 v8plusa ultra2 16/32/1:2048/64/1

ultra2/2170 v8plusa ultra 16/32/1:512/64/1

ultra2/2200 v8plusa ultra 16/32/1:1024/64/1

ultra2/2300 v8plusa ultra2 16/32/1:2048/64/1

ultra2e v8plusa ultra2e 16/32/1:256/64/4

ultra2i v8plusa ultra2i 16/32/1:512/64/1

ultra3 v8plusa ultra3 64/32/4:8192/512/1

ultra3cu v8plusa ultra3cu 64/32/4:8192/512/2

ultra3i v8plusa ultra3i 64/32/4:1024/64/4

ultra4 v8plusa ultra4 64/32/4:8192/128/2

ultra4plus v8plusa ultra4plus 64/32/4:2048/64/4/2:32768/64/4

ultraT1 v8plusa ultraT1 8/16/4/4:3072/64/12/32

ultraT2 sparcvis2 ultraT2 8/16/4:4096/64/16

sparc64vi sparcfmaf sparc64vi 128/64/2:5120/64/10

See “B.2.74 -xcache[=c]” on page 252 for more information on the cache properties of the UltraSPARC IVplus,
UltraSPARC T1, and UltraSPARC T2 chips.

B.2 The ccOptions

Appendix B • C Compiler Options Reference 307

B.2.144.2 -xtargetValues on x86 Platforms
Compiling for 64-bit Solaris software on 64-bit x86 platforms is indicated by the -m64 option. If
you specify -xtarget with a flag other than native64 or generic64, you must also specify the
-m64 option as follows: -xtarget=opteron ... -m64 otherwise the compiler uses a 32-bit
memory model.

TABLE B–39 The -xtargetExpansions on x86

-xtarget= -xarch -xchip -xcache

generic generic generic generic

386 Obsolete. Use -xtarget=generic instead. For a complete list of obsolete options, see
“A.1.15 Obsolete Options” on page 214.

486 Obsolete. Use -xtarget=generic instead. For a complete list of obsolete options, see
“A.1.15 Obsolete Options” on page 214.

opteron sse2 opteron 64/64/2:1024/64/16

pentium 386 pentium generic

pentium_pro pentium_pro pentium_pro generic

pentium3 sse pentium3 16/32/4:256/32/4

pentium4 sse2 pentium4 8/64/4:256/128/8

B.2.145 -xtemp=dir
Sets the directory for temporary files used by cc to dir. No space is allowed within this option
string. Without this option, temporary files go into /tmp. -xtemp has precedence over the
TMPDIR environment variable.

B.2.146 -xthreadvar[=o]
Specify -xthreadvar to control the implementation of thread local variables. Use this option in
conjunction with the __thread declaration specifier to take advantage of the compiler’s
thread-local storage facility. After you declare the thread variables with the __thread specifier,
specify -xthreadvar to enable the use of thread-local storage with position dependent code
(non-PIC code) in dynamic (shared) libraries. For more information on how to use __thread,
see “2.3 Thread Local Storage Specifier” on page 35.

o must be one the following:

B.2 The ccOptions

Sun Studio 12: C User's Guide •308

TABLE B–40 The -xthreadvarFlags

Flag Meaning

[no%]dynamic [[Do not] Compile variables for dynamic loading. Access to thread variables is
significantly faster when -xthreadvar=no%dynamic but you cannot use the object
file within a dynamic library. That is, you can only use the object file in an
executable file.

If you do not specify -xthreadvar, the default used by the compiler depends upon whether or
not position-independent code is enabled. If position-independent code is enabled, the option
is set to -xthreadvar=dynamic. If position-independent code is disabled, the option is set to
-xthreadvar=no%dynamic.

If you specify -xthreadvar, but do not specify any values, the option is set to
-xthreadvar=dynamic.

If there is non-position-independent code within a dynamic library, you must specify
-xthreadvar.

The linker cannot support the thread-variable equivalent of non-PIC code in dynamic libraries.
Non-PIC thread variables are significantly faster, and hence should be the default for
executables.

Using thread variables on different versions of Solaris software requires different options on the
command line.

■ On Solaris 8 software, objects that use __thread must be compiled with -mt and must be
linked with -mt -L/usr/lib/lwp -R/usr/lib/lwp.

■ On Solaris 9 software, objects that use __thread must be compiled and linked with -mt.

See Also: -xcode, -KPIC, -Kpic

B.2.147 -xtime

Reports the time and resources used by each compilation component.

B.2.148 -xtransition

Issues warnings for the differences between K&R C and Sun ISO C.

The -xtransition option issues warnings in conjunction with the -Xa and -Xt options. You
can eliminate all warning messages about differing behavior through appropriate coding. The
following warnings no longer appear unless you issue the -xtransition option:

■ \a is ISO C “alert” character

B.2 The ccOptions

Appendix B • C Compiler Options Reference 309

■ \x is ISO C hex escape

■ bad octal digit

■ base type is really type tag: name
■ comment is replaced by “##”
■ comment does not concatenate tokens

■ declaration introduces new type in ISO C: type tag
■ macro replacement within a character constant

■ macro replacement within a string literal

■ no macro replacement within a character constant

■ no macro replacement within a string literal

■ operand treated as unsigned

■ trigraph sequence replaced

■ ISO C treats constant as unsigned: operator
■ semantics of operator change in ISO C; use explicit cast

B.2.149 -xtrigraphs

The -xtrigraphs option determines whether the compiler recognizes trigraph sequences as
defined by the ISO C standard.

By default, the compiler assumes -xtrigraphs=yes and recognizes all trigraph sequences
throughout the compilation unit.

If your source code has a literal string containing question marks (?) that the compiler is
interpreting as a trigraph sequence, you can use the -xtrigraph=no suboption to turn off the
recognition of trigraph sequences. The -xtrigraphs=no option turns off recognition of all
trigraphs throughout the entire compilation unit.

Consider the following example source file named trigraphs_demo.c.

#include <stdio.h>

int main ()

{

(void) printf("(\?\?) in a string appears as (??)\n");

return 0;

}

Here is the output if you compile this code with -xtrigraphs=yes.

example% cc -xtrigraphs=yes trigraphs_demo.c

example% a.out

(??) in a string appears as (]

B.2 The ccOptions

Sun Studio 12: C User's Guide •310

Here is the output if you compile this code with -xtrigraphs=no.

example% cc -xtrigraphs=no trigraphs_demo.c

example% a.out

(??) in a string appears as (??)

B.2.150 -xunroll=n
Suggests to the optimizer to unroll loops n times. n is a positive integer. When n is 1, it is a
command, and the compiler unrolls no loops. When n is greater than 1, the -xunroll=n merely
suggests to the compiler that it unroll loops n times.

B.2.151 -xustr={ascii_utf16_ushort|no}
Use this option if you need to support an internationalized application that uses ISO10646
UTF-16 string literals. In other words, use this option if your code contains a string literal that
you want the compiler to convert to UTF-16 strings in the object file. Without this option, the
compiler neither produces nor recognizes sixteen-bit character string literals. This option
enables recognition of the U"ASCII_string" string literals as an array of type unsigned short int.
Since such strings are not yet part of any standard, this option enables recognition of
non-standard C.

You can turn off compiler recognition of U”ASCII_string” string literals by specifying
-xustr=no. The right-most instance of this option on the command line overrides all previous
instances.

The default is -xustr=no. If you specify -xustr without an argument, the compiler won’t accept
it and instead issues a warning. The default can change if the C or C++ standards define a
meaning for the syntax.

It is not an error to specify -xustr=ascii_utf16_ushort without also specifying a
U"ASCII_string" string literals.

Not all files have to be compiled with this option.

The following example shows a string literal in quotes that is prepended by U. It also shows a
command line that specifies -xustr.

example% cat file.c

const unsigned short *foo = U"foo";
const unsigned short bar[] = U"bar";
const unsigned short *fun() { return

example% cc -xustr=ascii_utf16_ushort file.c -c

B.2 The ccOptions

Appendix B • C Compiler Options Reference 311

B.2.152 -xvector[=a]
Enable automatic generation of calls to the vector library functions and/or the generation of the
SIMD (Single Instruction Multiple Data) instructions. You must use default rounding mode by
specifying -fround=nearest when you use this option.

a is the equivalent of the following:

TABLE B–41 The -xvectorFlags

Value Meaning

[no%]lib Does [not] enable the compiler to transform math library calls within loops
into single calls to the equivalent vector math routines when such
transformations are possible. This could result in a performance improvement
for loops with large loop counts.

[no%]simd Does [not] direct the compiler to use the native x86 SSE SIMD instructions to
improve performance of certain loops. The compiler can only accept this
switch if the target architecture supports SIMD instructions. For example, you
must specify -xarch=amd64, -xarch=amd64a or -xarch=generic64. You must
also specify an optimization level of -xO3 or above as well as -xdepend when
you specify -xvector=simd.

yes This option may be deprecated in a future release. Specify -xvector=lib
instead.

no This option may be deprecated in a future release. Specify -xvector=none
instead.

The default is -xvector=%none. If you specify -xvector, but do not provide a flag, the compiler
assumes -xvector=lib.

If you use -xvector on the command line without previously specifying -xdepend, -xvector
triggers -xdepend. The -xvector option also raises the optimization level to -x03 if
optimization is not specified or optimization is set lower than -x03.

The compiler includes the libmvec libraries in the load step. If you compile and link with
separate commands, be sure to use -xvector in the linking cc command. For a complete list of
all compiler options that must be specified at both compile time and at link time, see Table A–2.

B.2.153 -xvis

(SPARC) Use the -xvis=[yes|no] command when you are using the assembly-language
templates defined in the VIS[tm] instruction-set Software Developers Kit (VSDK). The default
is -xvis=no. Specifying -xvis is equivalent to specifying -xvis=yes.

B.2 The ccOptions

Sun Studio 12: C User's Guide •312

The VIS instruction set is an extension to the SPARC v9 instruction set. Even though the
UltraSPARC processors are 64-bit, there are many cases, especially in multimedia applications,
when the data are limited to eight or 16 bits in size. The VIS instructions can process four 16-bit
data with one instruction so they greatly improve the performance of applications that handle
new media such as imaging, linear algebra, signal processing, audio, video and networking.

For more information on the VSDK, see http://www.sun.com/processors/vis/.

B.2.154 -xvpara

Show parallelization warning messages.

Issues warnings about potential parallel programming related problems that may cause
incorrect results when using OpenMP or Sun parallel directives and pragmas.

Use with -xopenmp and OpenMP API directives, or with -xexplicitpar and MP
parallelization directives.

Warnings are issued when the compiler detects the following situations:

■ Loops that are parallelized using MP directives when there are data dependencies between
different loop iterations

■ Problematic use of OpenMP data sharing attributes clauses, such as declaring a variable
"shared" whose accesses in an OpenMP parallel region may cause data race, or declaring a
variable "private" whose value in a parallel region is used after the parallel region.

No warnings appear if all parallelization directives are processed without problems.

Example:

cc -xopenmp -vpara any.c

Note – Sun Studio compilers support OpenMP 2.5 API parallelization. Consequently, the MP
pragmas directives are deprecated and are no longer supported. See the OpenMP API User’s
Guide for information on migrating to the OpenMP API.

B.2.155 -Yc,dir
Specifies a new directory dir for the location of component c. c can consist of any of the
characters representing components that are listed under the -W option.

If the location of a component is specified, then the new path name for the tool is dir/tool. If
more than one -Y option is applied to any one item, then the last occurrence holds.

B.2 The ccOptions

Appendix B • C Compiler Options Reference 313

B.2.156 -YA, dir
Specifies a directory dir to search for all compiler components. If a component is not found in
dir, the search reverts to the directory where the compiler is installed.

B.2.157 -YI, dir
Changes the default directory searched for include files.

B.2.158 -YP, dir
Changes the default directory for finding library files.

B.2.159 -YS, dir
Changes the default directory for startup object files.

B.2.160 -Zll

(SPARC) Creates the program database for lock_lint, but does not generate executable code.
Refer to the lock_lint(1) man page for more details.

B.3 Options Passed to the Linker
cc recognizes -a, -e, -r, -t, -u, and -z and passes these options and their arguments to ld.
cc passes any unrecognized options to ld with a warning.

B.3 Options Passed to the Linker

Sun Studio 12: C User's Guide •314

Implementation-Defined ISO/IEC C99 Behavior

The ISO/IEC 9899:1999, Programming Languages- C standard specifies the form and
establishes the interpretation of programs written in C. However, this standard leaves a number
of issues as implementation-defined, that is, as varying from compiler to compiler. This chapter
details these areas. The section numbers are provided as part of the headings in this appendix
for ready comparison to the ISO/IEC 9899:1999 standard itself:

■ Each section heading uses the same section text and letter.number identifier as found in the
ISO standard.

■ Each section provides the requirement (preceded by a bullet) from the ISO standard which
describes what it is that the implementation shall define. This requirement is then followed
by an explanation of our implementation.

C.1 Implementation-defined Behavior (J.3)
A conforming implementation is required to document its choice of behavior in each of the
areas listed in this subclause. The following are implementation-defined:

C.1.1 Translation (J.3.1)
■ How a diagnostic is identified (3.10, 5.1.1.3).

Error and warning messages have the following format:
filename, line number: message
Where filename is the name of the file that contains the error or warning,
line number is the number of the line on which the error or warning is found, and message is
the diagnostic message.

■ Whether each non-empty sequence of white-space characters other than new-line is
retained or replaced by one space character in translation phase 3 (5.1.1.2).

CA P P E N D I X C

315

A sequence of non-empty characters consisting of a tab (\t), form-feed (\f), or vertical-feed
(\v) are replaced by a single space character.

C.1.2 Environment (J.3.2)
■ The mapping between physical source file multi-byte characters and the source character set

in translation phase 1 (5.1.1.2).
There are eight bits in a character for the ASCII portion; locale-specific multiples of eight
bits for locale-specific extended portion.

■ The name and type of the function called at program startup in a freestanding environment
(5.1.2.1).
The implementation is hosted environment.

■ The effect of program termination in a freestanding environment (5.1.2.1).
The implementation is in a hosted environment.

■ An alternative manner in which the main function may be defined (5.1.2.2.1).
There is no alternative way to define main other than that defined in the standard.

■ The values given to the strings pointed to by the argv argument to main (5.1.2.2.1).
argv is an array of pointers to the command-line arguments, where argv[0] represents the
program name if it is available.

■ What constitutes an interactive device (5.1.2.3).
An interactive device is one for which the system library call isatty() returns a nonzero
value

■ The set of signals, their semantics, and their default handling (7.14).
The following table shows the semantics for each signal as recognized by the signal
function:

TABLE C–1 Semantics of signal Function Signals

Signal Number Default Event Semantics of Signal

SIGHUP 1 Exit hangup

SIGINT 2 Exit interrupt (rubout)

SIGQUIT 3 Core quit (ASCII FS)

SIGILL 4 Core illegal instruction (not reset when caught)

SIGTRAP 5 Core trace trap (not reset when caught)

SIGIOT 6 Core IOT instruction

C.1 Implementation-defined Behavior (J.3)

Sun Studio 12: C User's Guide •316

TABLE C–1 Semantics of signal Function Signals (Continued)
Signal Number Default Event Semantics of Signal

SIGABRT 6 Core Used by abort

SIGEMT 7 Core EMT instruction

SIGFPE 8 Core floating point exception

SIGKILL 9 Exit kill (cannot be caught or ignored)

SIGBUS 10 Core bus error

SIGSEGV 11 Core segmentation violation

SIGSYS 12 Core bad argument to system call

SIGPIPE 13 Exit write on a pipe with no one to read it

SIGALRM 14 Exit alarm clock

SIGTERM 15 Exit software termination signal from kill

SIGUSR1 16 Exit user defined signal 1

SIGUSR2 17 Exit user defined signal 2

SIGCLD 18 Ignore child status change

SIGCHLD 18 Ignore child status change alias (POSIX)

SIGPWR 19 Ignore power-fail restart

SIGWINCH 20 Ignore window size change

SIGURG 21 Ignore urgent socket condition

SIGPOLL 22 Exit pollable event occurred

SIGIO 22 Sigpoll socket I/O possible

SIGSTOP 23 Stop stop (cannot be caught or ignored)

SIGTSTP 24 Stop user stop requested from tty

SIGCONT 25 Ignore stopped process has been continued

SIGTTIN 26 Stop background tty read attempted

SIGTTOU 27 Stop background tty write attempted

SIGVTALRM 28 Exit virtual timer expired

SIGPROF 29 Exit profiling timer expired

SIGXCPU 30 Core exceeded cpu limit

SIGXFSZ 31 Core exceeded file size limit

C.1 Implementation-defined Behavior (J.3)

Appendix C • Implementation-Defined ISO/IEC C99 Behavior 317

TABLE C–1 Semantics of signal Function Signals (Continued)
Signal Number Default Event Semantics of Signal

SIGWAITING 32 Ignore reserved signal no longer used by threading code

SIGLWP 33 Ignore reserved signal no longer used by threading code

SIGFREEZE 34 Ignore Checkpoint suspend

SIGTHAW 35 Ignore Checkpoint resume

SIGCANCEL 36 Ignore Cancellation signal used by threads library

SIGLOST 37 Ignore resource lost (record-lock lost)

SIGXRES 38 Ignore Resource control exceeded (see setrctl(2))

SIGJVM1 39 Ignore Reserved for Java Virtual Machine 1

SIGJVM2 40 Ignore Reserved for Java Virtual Machine 2

■ Signal values other than SIGFPE, SIGILL, and SIGSEGV that correspond to a computational
exception (7.14.1.1).
SIGILL, SIGFPE, SIGSEGV, SIGTRAP, SIGBUS, and SIGEMT, see Table C–1.

■ Signals for which the equivalent of signal(sig, SIG_IGN); is executed at program startup
(7.14.1.1).A
SIGILL, SIGFPE, SIGSEGV, SIGTRAP, SIGBUS, and SIGEMT, see Table C–1.

■ The set of environment names and the method for altering the environment list used by the
getenv function (7.20.4.5).
The environment names are listed in the man page environ(5).

■ The manner of execution of the string by the system function (7.20.4.6).
From the system(3C) man page:
The system() function causes string to be given to the shell as input, as if string had been
typed as a command at a terminal. The invoker waits until the shell has completed, then
returns the exit status of the shell in the format specified by waitpid(2).
If string is a null pointer, system() checks if the shell exists and is executable. If the shell is
available, system() returns a non-zero value; otherwise, it returns 0.

C.1.3 Identifiers (J.3.3)
■ Which additional multibyte characters may appear in identifiers and their correspondence

to universal character names (6.4.2).
None

■ The number of significant initial characters in an identifier (5.2.4.1, 6.4.2).

C.1 Implementation-defined Behavior (J.3)

Sun Studio 12: C User's Guide •318

1023

C.1.4 Characters (J.3.4)
■ The number of bits in a byte (3.6).

There are 8 bits in a byte.
■ The values of the members of the execution character set (5.2.1).

Mapping is identical between source and execution characters.
■ The unique value of the member of the execution character set produced for each of the

standard alphabetic escape sequences (5.2.2).

TABLE C–2 Standard Alphabetic Escape Sequence Unique Values

Escape Sequence Unique Value

\a (alert) 7

\b (backspace) 8

\f (form feed) 12

\n (new line) 10

\r (carriage return) 13

\t (horizontal tab) 9

\v (vertical tab) 11

■ The value of a char object into which has been stored any character other than a member of
the basic execution character set (6.2.5).
It is the numerical value of the low order 8 bits associated with the character assigned to the
char object.

■ Which of signed char or unsigned char has the same range, representation, and behavior as
“plain” char (6.2.5, 6.3.1.1).
A signed char is treated as a “plain” char (SPARC) (x86).

■ The mapping of members of the source character set (in character constants and string
literals) to members of the execution character set (6.4.4.4, 5.1.1.2).
Mapping is identical between source and execution characters.

■ The value of an integer character constant containing more than one character or
containing a character or escape sequence that does not map to a single-byte execution
character (6.4.4.4).
A multiple-character constant that is not an escape sequence has a value derived from the
numeric values of each character.

C.1 Implementation-defined Behavior (J.3)

Appendix C • Implementation-Defined ISO/IEC C99 Behavior 319

■ The value of a wide character constant containing more than one multibyte character, or
containing a multibyte character or escape sequence not represented in the extended
execution character set (6.4.4.4).

A multiple-character wide character constant that is not an escape sequence has a value
derived from the numeric values of each character.

■ The current locale used to convert a wide character constant consisting of a single
multi-byte character that maps to a member of the extended execution character set into a
corresponding wide character code (6.4.4.4).

The valid locale specified by LC_ALL, LC_CTYPE, or LANG environment variable.
■ The current locale used to convert a wide string literal into corresponding wide character

codes (6.4.5).

The valid locale specified by LC_ALL, LC_CTYPE, or LANG environment variable.
■ The value of a string literal containing a multi-byte character or escape sequence not

represented in the execution character set (6.4.5).

Each byte of the multi-byte character forms a character of the string literal, with a value
equivalent to the numerical value of that byte in the multi-byte character.

C.1.5 Integers (J.3.5)
■ Any extended integer types that exist in the implementation (6.2.5).

None
■ Whether signed integer types are represented using sign and magnitude, two’s complement,

or one’s complement, and whether the extraordinary value is a trap representation or an
ordinary value (6.2.6.2).

Signed integer types are represented as two’s complement. Extraordinary value is an
ordinary value.

■ The rank of any extended integer type relative to another extended integer type with the
same precision (6.3.1.1).

Not applicable to this implementation.
■ The result of, or the signal raised by, converting an integer to a signed integer type when the

value cannot be represented in an object of that type (6.3.1.3).

When an integer is converted to a shorter signed integer, the low order bits are copied from
the longer integer to the shorter signed integer. The result may be negative.

When an unsigned integer is converted to a signed integer of equal size, the low order bits
are copied from the unsigned integer to the signed integer. The result may be negative.

■ The results of some bit-wise operations on signed integers (6.5).

C.1 Implementation-defined Behavior (J.3)

Sun Studio 12: C User's Guide •320

The result of a bit-wise operation applied to a signed type is the bit-wise operation of the
operands, including the sign bit. Thus, each bit in the result is set if--and only if--each of the
corresponding bits in both of the operands is set.

C.1.6 Floating point (J.3.6)
■ The accuracy of the floating-point operations and of the library functions in <math.h> and

<complex.h> that return floating-point results (5.2.4.2.2).
The accuracy of floating point operations is consistent with the settings of
FLT_EVAL_METHOD. The accuracy of the library functions in <math.h> and <complex.h> is as
specified in the libm(3LIB) man page.

■ The rounding behaviors characterized by non-standard values of FLT_ROUNDS (5.2.4.2.2).
Not applicable to this implementation.

■ The evaluation methods characterized by non-standard negative values of
FLT_EVAL_METHOD (5.2.4.2.2).
Not applicable to this implementation.

■ The direction of rounding when an integer is converted to a floating-point number that
cannot exactly represent the original value (6.3.1.4).
It honors the prevailing rounding direction mode.

■ The direction of rounding when a floating-point number is converted to a narrower
floating-point number (6.3.1.5).
It honors the prevailing rounding direction mode.

■ How the nearest representable value or the larger or smaller representable value
immediately adjacent to the nearest representable value is chosen for certain floating
constants (6.4.4.2).
Floating-point constant is always rounded to the nearest representable value.

■ Whether and how floating expressions are contracted when not disallowed by the
FP_CONTRACT pragma (6.5).
Not applicable to this implementation.

■ The default state for the FENV_ACCESS pragma (7.6.1).
For -fsimple=0, the default value is ON. Otherwise for all other values of -fsimple, the
default value for FENV_ACCESS is OFF.

■ Additional floating-point exceptions, rounding modes, environments, and classifications,
and their macro names (7.6, 7.12).
Not applicable to this implementation.

■ The default state for the FP_CONTRACT pragma (7.12.2).

C.1 Implementation-defined Behavior (J.3)

Appendix C • Implementation-Defined ISO/IEC C99 Behavior 321

For -fsimple=0, the default value is OFF. Otherwise for all other values of -fsimple, the
default value for FENV_ACCESS is ON.

■ Whether the “inexact” floating-point exception can be raised when the rounded result
actually does equal the mathematical result in an IEC 60559 conformant implementation
(F.9).

Results are indeterminable.
■ Whether the underflow (and ”inexact) floating-point exception can be raised when a result

is tiny but not inexact in an IEC 60559 conformant implementation(F.9).

The hardware does not raise underflow or inexact in such cases when trapping on underflow
is disabled (the default).

C.1.7 Arrays and Pointers (J.3.7)
■ The result of converting a pointer to an integer or -Xarch=v9 vice versa (6.3.2.3).

The bit pattern does not change when converting pointers and integers. Except when the
results cannot be represented in the integer or pointer type, and then the results are
undefined.

■ The size of the result of subtracting two pointers to elements of the same array (6.5.6).

int as defined in stddef.h. long for -Xarch=v9

C.1.8 Hints (J.3.8)
■ The extent to which suggestions made by using the register storage-class specifier are

effective (6.7.1).

The number of effective register declarations depends on patterns of use and definition
within each function and is bounded by the number of registers available for allocation.
Neither the compiler nor the optimizer is required to honor register declarations.

■ The extent to which suggestions made by using the inline function specifier are effective
(6.7.4).

The inline keyword is effective in causing the inlining of code only when using
optimization, and only when the optimizer determines it is profitable to inline. See “A.1.1
Optimization and Performance Options” on page 203 for a list of optimization options.

C.1 Implementation-defined Behavior (J.3)

Sun Studio 12: C User's Guide •322

C.1.9 Structures, Unions, Enumerations, and Bit-fields
(J.3.9)
■ Whether a “plain” int bit-field is treated as signed int bit-field or as an unsigned int bit-field

(6.7.2, 6.7.2.1).
It is treated as an unsigned int.

■ Allowable bit-field types other than _Bool, signed int, and unsigned int (6.7.2.1).
A bit field can be declared as any integer type.

■ Whether a bit-field can straddle a storage-unit boundary (6.7.2.1).
Bit-fields do not straddle storage-unit boundaries.

■ The order of allocation of bit-fields within a unit (6.7.2.1).
Bit-fields are allocated within a storage unit from high-order to low-order.

■ The alignment of non-bit-field members of structures (6.7.2.1). This should present no
problem unless binary data written by one implementation is read by another.

TABLE C–3 Padding and Alignment of Structure Members

Type Alignment Boundary Byte Alignment

char byte 1

short halfword 2

int word 4

long (SPARC) v8 word 4

long (SPARC) v9 doubleword 8

float (SPARC) word 4

double (SPARC) doubleword 8

double (x86) doubleword 4

long double (SPARC) v8 doubleword 8

long double (x86) word 4

long double (SPARC) v9 quadword 16

pointer (SPARC) v8 word 4

pointer (SPARC) v9 quadword 8

long long doubleword (SPARC) 8

long long (x86) word 4

C.1 Implementation-defined Behavior (J.3)

Appendix C • Implementation-Defined ISO/IEC C99 Behavior 323

TABLE C–3 Padding and Alignment of Structure Members (Continued)
Type Alignment Boundary Byte Alignment

_Complex float 8

_Complex double 16

_Complex long double 32

_Imaginary float 4

_Imaginary (SPARC) double 8

_Imaginary (x86) double 4

_Imaginary (SPARC) v8 long double 8

_Imaginary (SPARC) v9 long double 16

_Imaginary (x86) long double 4

■ The integer type compatible with each enumerated type (6.7.2.2).
This is an int.

C.1.10 Qualifiers (J.3.10)
■ What constitutes an access to an object that has volatile-qualified type (6.7.3).

Each reference to the name of an object constitutes one access to the object.

C.1.11 Preprocessing Directives (J.3.11)
■ How sequences in both forms of header names are mapped to headers or external source file

names (6.4.7).
Source file characters are mapped to their corresponding ASCII values.

■ Whether the value of a character constant in a constant expression that controls conditional
inclusion matches the value of the same character constant in the execution character set
(6.10.1).
A character constant within a preprocessing directive has the same numeric value as it has
within any other expression.

■ Whether the value of a single-character character constant in a constant expression that
controls conditional inclusion may have a negative value (6.10.1).
Character constants in this context may have negative values (SPARC) (x86).

■ The places that are searched for an included < > delimited header, and how the places are
specified other header is identified (6.10.2).

C.1 Implementation-defined Behavior (J.3)

Sun Studio 12: C User's Guide •324

The location of header files depends upon the options specified on the command line, and in
which file the #include directive appears. For more information, see “2.14 How to Specify
Include Files” on page 56.

■ How the named source file is searched for in an included " " delimited header (6.10.2).
The location of header files depends upon the options specified on the command line, and in
which file the #include directive appears. For more information, see “2.14 How to Specify
Include Files” on page 56.

■ The method by which preprocessing tokens (possibly resulting from macro expansion) in a
#include directive are combined into a header name (6.10.2).
All the tokens making up the header name (including white space) are treated as the file path
used when searching for the header as described in “2.14 How to Specify Include Files” on
page 56.

■ The nesting limit for #include processing (6.10.2).
No limit is imposed by the compiler.

■ Whether the # operator inserts a \ character before the \ character that begins a universal
character name in a character constant or string literal (6.10.3.2).
No.

■ The behavior on each recognized non-STDC #pragma directive (6.10.6).
See “2.8 Pragmas” on page 41 for a description of the behavior of each recognized
non-STDC #pragma directive.

■ The definitions for __DATE__ and __TIME__ when respectively, the date and time of
translation are not available (6.10.8).
These macros are always available from the environment.

C.1.12 Library Functions (J.3.12)
■ Any library facilities available to a freestanding program, other than the minimal set

required by clause 4 (5.1.2.1).
The implementation is on a hosted environment.

■ The format of the diagnostic printed by the assert macro (7.2.1.1).
The diagnostic is structured as follows:
Assertion failed: statement. file filename, line number, function name
statement is the statement which failed the assertion. filename is the value of __FILE__. line
number is the value of __LINE__. function name is the value of __func__.

■ The representation of the floating-point status flags stored by the fegetexceptflag
function (7.6.2.2).

C.1 Implementation-defined Behavior (J.3)

Appendix C • Implementation-Defined ISO/IEC C99 Behavior 325

Each exception stored in the status flag by fegetexceptflag expands to an integer constant
expression with values such that bitwise-inclusive ORs of all combinations of the constants
result in distinct values.

■ Whether the feraiseexcept function raises the “inexact” floating-point exception in
addition to the “overflow” or “underflow” floating-point exception (7.6.2.3).
No, “inexact” is not raised.

■ Strings other than “C” and “” that may be passed as the second argument to the setlocale
function (7.11.1.1).
Intentionally left blank.

■ The types defined for float_t and double_t when the value of the FLT_EVAL_METHOD macro
is less than zero or greater than two (7.12).
■ For SPARC, the types are as follows:

typedef float float_t;

typedef double double_t;

■ For x86 the types are as follows:
typedef long double float_t;

typedef long double double_t;

Domain errors for the mathematics functions, other that those required by this
International Standard (7.12.1).

ilogb(), ilogbf() and ilogbl() raise the invalid exception if the input argument is 0, +/-Inf
or NaN.

■ The values returned by the mathematics functions on domain errors (7.12.1).
The values returned on domain errors in full C99 mode (-xc99=%all,lib), are as specified
in Annex F of ISO/IEC 9899:1999, Programming Languages - C.

■ The values returned by the mathematics functions on underflow range errors, whether
errno is set to the value of the macro ERANGE when the integer expression
math_errhandling & MATH_ERRNO is nonzero, and whether the “underflow” floating-point
exception is raised when the integer expression math_errhandling & MATH_ERREXCEPT is
nonzero. (7.12.1).
For underflow range errors: if the value can be represented as a subnormal number, the
subnormal number is returned; otherwise +-0 is returned as appropriate.
As for whether errno is set to the value of the macro ERANGE when the integer expression
math_errhandling & MATH_ERRNO is nonzero, since (math_errhandling & MATH_ERRNO) ==
0 in our implementation, this part does not apply.
Whether the “underflow” floating-point exception is raised when the integer expression
math_errhandling & MATH_ERREXCEPT is nonzero (7.12.1), the exception is raised when a
floating-point underflow is coupled with loss of accuracy.

C.1 Implementation-defined Behavior (J.3)

Sun Studio 12: C User's Guide •326

■ Whether a domain error occurs or zero is returned when an fmod function has a second
argument of zero(7.12.10.1).
A domain error occurs.

■ The base-2 logarithm of the modulus used by the remquo functions in reducing the quotient
(7.12.10.3).
31.

■ Whether the equivalent of signal(sig, SIG_DFL); is executed prior to the call of a signal
handler, and, if not, the blocking of signals that is performed (7.14.1.1).
The equivalent of signal(sig, SIG_DFL); is executed prior to the call of a signal handler.

■ The null pointer constant to which the macro NULL expands (7.17).
NULL expands to 0.

■ Whether the last line of a text stream requires a terminating new-line character (7.19.2).
The last line does not need to end in a newline.

■ Whether space characters that are written out to a text stream immediately before a
new-line character appear when read in (7.19.2).
All characters appear when the stream is read.

■ The number of null characters that may be appended to data written to a binary stream
(7.19.2).
No null characters are appended to a binary stream.

■ Whether the file position indicator of an append-mode stream is initially positioned at the
beginning or end of the file (7.19.3).
The file position indicator is initially positioned at the end of the file.

■ Whether a write on a text stream causes the associated file to be truncated beyond that point
(7.19.3).
A write on a text stream does not cause a file to be truncated beyond that point unless a
hardware device forces it to happen.

■ The characteristics of file buffering (7.19.3).
Output streams, with the exception of the standard error stream (stderr), are by
default-buffered if the output refers to a file, and line-buffered if the output refers to a
terminal. The standard error output stream (stderr) is by default unbuffered.
A buffered output stream saves many characters, and then writes the characters as a block.
An unbuffered output stream queues information for immediate writing on the destination
file or terminal immediately. Line-buffered output queues each line of output until the line is
complete (a newline character is requested).

■ Whether a zero-length file actually exists (7.19.3).
A zero-length file does exist since it has a directory entry.

■ The rules for composing valid file names (7.19.3).

C.1 Implementation-defined Behavior (J.3)

Appendix C • Implementation-Defined ISO/IEC C99 Behavior 327

A valid file name can be from 1 to 1,023 characters in length and can use all character except
the characters null and / (slash).

■ Whether the same file can be simultaneously open multiple times (7.19.3).
The same file can be opened multiple times.

■ The nature and choice of encodings used for multibyte characters in files (7.19.3).
The encodings used for multibyte characters are the same for each file.

■ The effect of the remove function on an open file (7.19.4.1).
The file is deleted on the last call which closes the file. A program cannot open a file which
has already been removed.

■ The effect if a file with the new name exists prior to a call to the rename function (7.19.4.2).
If the file exists, it is removed and the new file is written over the previously existing file.

■ Whether an open temporary file is removed upon abnormal program termination
(7.19.4.3).
If the process is killed in the period between file creation and unlinking, a permanent file
may be left behind. See the freopen(3C) man page.

■ Which changes of mode are permitted (if any), and under what circumstances (7.19.5.4).
The following changes of mode are permitted, depending upon the access mode of the file
descriptor underlying the stream:
■ When + is specified, the file descriptor mode must be O_RDWR.
■ When r is specified, the file descriptor mode must be O_RDONLY or O_RDWR.
■ When a or w is specified, the file descriptor mode must be O_WRONLY or O_RDWR.

See the freopen(3C) man page.

The style used to print an infinity or NaN, and the meaning of any n-char or n-wchar
sequence printed for a NaN (7.19.6.1, 7.24.2.1).

[-]Inf, [-]NaN. With F conversion specifier, [-]INF, [-]NAN.
■ The output for %p conversion in the fprintf or fwprintf function (7.19.6.1, 7.24.2.1).

The output for %p is equivalent to %x.
■ The interpretation of a - character that is neither the first nor the last character, nor the

second where a ^ character is the first, in the scanlist for %[conversion in the fscanf() or
fwscanf() function (7.19.6.2, 7.24.2.1).
If a - is in the scanlist and is not the first character, nor the second where the first character is
a ^, nor the last character, it indicates a range of characters to be matched.
See the fscanf(3C) man page.

■ The set of sequences matched by a %p conversion and the interpretation of the
corresponding input item in the fscanf() or fwscanf() function (7.19.6.2, 7.24.2.2).

C.1 Implementation-defined Behavior (J.3)

Sun Studio 12: C User's Guide •328

Matches the set of sequences that is the same as the set of sequences that is produced by the
%p conversion of the corresponding printf(3C) functions. The corresponding argument
must be a pointer to a pointer to void. If the input item is a value converted earlier during the
same program execution, the pointer that results will compare equal to that value; otherwise
the behavior of the %p conversion is undefined.
See the fscanf(3C) man page.

■ The value to which the macro errno is set by the fgetpos, fsetpos, or ftell functions on
failure (7.19.9.1, 7.19.9.3, 7.19.9.4).
■ EBADF The file descriptor underlying stream is not valid. See the fgetpos(3C) man page.
■ ESPIPE The file descriptor underlying stream is associated with a pipe, a FIFO, or a

socket. See the fgetpos(3C) man page.
■ EOVERFLOW The current value of the file position cannot be represented correctly in an

object of type fpos_t. See the fgetpos(3C) man page.
■ EBADF The file descriptor underlying stream is not valid. See the fsetpos(3C) man page.
■ ESPIPE The file descriptor underlying stream is associated with a pipe, a FIFO, or a

socket. See the fsetpos(3C) man page.
■ EBADF The file descriptor underlying stream is not an open file descriptor. See the

ftell(3C) man page.
■ ESPIPE The file descriptor underlying stream is associated with a pipe, a FIFO, or a

socket. See the ftell(3C) man page.
■ EOVERFLOW The current file offset cannot be represented correctly in an object of type

long. See the ftell(3C) man page.

The meaning of any n-char or n-wchar sequence in a string representing a NaN that is
converted by the strtod(), strtof(), strtold(), wcstod(), wcstof(), or wcstold() function
(7.20.1.3, 7.24.4.1.1).

No special meaning is given to the n-char sequence.
■ Whether or not the strtod, strtof, strtold, wcstod, wcstof, or wcstold function sets

errno to ERANGE when underflow occurs (7.20.1.3, 7.24.4.1.1).
Yes, errno is set to ERANGE on underflow.

■ Whether the calloc, malloc, and realloc functions return a null pointer or a pointer to an
allocated object when the size requested is zero (7.20.3).
Either a null pointer or a unique pointer that can be passed to free() is returned.
See the malloc(3C) man page.

■ Whether open streams with unwritten buffered data are flushed, open streams are closed, or
temporary files are removed when the abort or _Exit function is called (7.20.4.1, 7.20.4.4).
The abnormal termination processing includes at least the effect of fclose(3C) on all open
streams. See the abort(3C) man page.

C.1 Implementation-defined Behavior (J.3)

Appendix C • Implementation-Defined ISO/IEC C99 Behavior 329

Open streams are closed and do not flush open streams. See the _Exit(2) man page.
■ The termination status returned to the host environment by the abort, exit, or _Exit

function (7.20.4.1, 7.20.4.3, 7.20.4.4).

The status made available to wait(3C) or waitpid(3C) by abort will be that of a process
terminated by the SIGABRT signal. See the abort(3C), exit(1), and _Exit(2) man pages.

The termination status returned by exit, or _Exit, depends on the what the parent process of
the calling process is doing.

If the parent process of the calling process is executing a wait(3C), wait3(3C), waitid(2), or
waitpid(3C), and has neither set its SA_NOCLDWAIT flag nor set SIGCHLD to SIG_IGN, it is notified
of the calling process’s termination and the low-order eight bits (that is, bits 0377) of status are
made available to it. If the parent is not waiting, the child’s status is made available to it when the
parent subsequently executes wait(), wait3(), waitid(), or waitpid().

■ The value returned by the system function when its argument is not a null pointer
(7.20.4.6).
The exit status of the shell in the format specified by waitpid(3C).

■ The local time zone and Daylight Saving Time (7.23.1).
The local time zone is set by the environment variable TZ.

■ The range and precision of times representable in clock_t and time_t (7.23).
The precision of clock_t and time_t is one millionth of a second. The range is
-2147483647-1 to 4294967295 millionths of a second on x86 and sparc v8. And
-9223372036854775807LL-1 to 18446744073709551615 on SPARC v9.

■ The era for the clock function (7.23.2.1).
The era for the clock is represented as clock ticks with the origin at the beginning of the
execution of the program.

■ The replacement string for the %Z specifier to the strftime, and wcsftime functions in the
“C” locale (7.23.3.5, 7.24.5.1).
The time zone name or abbreviation, or by no characters if no time zone is determinable.

■ Whether or when the trigonometric, hyperbolic, base-e exponential, base-e logarithmic,
error, and log gamma functions raise the “inexact” floating-point exception in an IEC 60559
conformant implementation (F.9).
The inexact exception is generally raised when the result is not exactly representable. The
inexact exception can be raised even when the result is exactly representable.

■ Whether the functions in <math.h> honor the rounding direction mode in an IEC 60559
conformant implementation (F.9).
No attempt is made to force the default rounding direction mode for all functions in
<math.h>.

C.1 Implementation-defined Behavior (J.3)

Sun Studio 12: C User's Guide •330

C.1.13 Architecture (J.3.13)
■ The values or expressions assigned to the macros specified in the headers <float.h>,

<limits.h>, and <stdint.h> (5.2.4.2, 7.18.2, 7.18.3).
■ Here are the values or expressions for the macros specified in <float.h>:

#define CHAR_BIT 8 /* max # of bits in a “char” */

#define SCHAR_MIN (-128) /* min value of a “signed char” */

#define SCHAR_MAX 127 /* max value of a “signed char” */

#define CHAR_MIN SCHAR_MIN /* min value of a “char” */

#define CHAR_MAX SCHAR_MAX /* max value of a “char” */

#define MB_LEN_MAX 5

#define SHRT_MIN (-32768) /* min value of a “short int” */

#define SHRT_MAX 32767 /* max value of a “short int” */

#define USHRT_MAX 65535 /* max value of “unsigned short int” */

#define INT_MIN (-2147483647-1) /* min value of an “int” */

#define INT_MAX 2147483647 /* max value of an “int” */

#define UINT_MAX 4294967295U /* max value of an “unsigned int” */

#define LONG_MIN (-2147483647L-1L)

#define LONG_MAX 2147483647L /* max value of a “long int” */

#define ULONG_MAX 4294967295UL /* max value of “unsigned long int” */

#define LLONG_MIN (-9223372036854775807LL-1LL)

#define LLONG_MAX 9223372036854775807LL

#define ULLONG_MAX 18446744073709551615ULL

#define FLT_RADIX 2

#define FLT_MANT_DIG 24

#define DBL_MANT_DIG 53

#define LDBL_MANT_DIG 64

#if defined(__sparc)

#define DECIMAL_DIG 36

#elif defined(__i386)

#define DECIMAL_DIG 21

#endif

#define FLT_DIG 6

#define DBL_DIG 15

#if defined(__sparc)

#define LDBL_DIG 33

#elif defined(__i386)

#define LDBL_DIG 18

#endif

#define FLT_MIN_EXP (-125)

#define DBL_MIN_EXP (-1021)

#define LDBL_MIN_EXP (-16381)

C.1 Implementation-defined Behavior (J.3)

Appendix C • Implementation-Defined ISO/IEC C99 Behavior 331

#define FLT_MIN_10_EXP (-37)

#define DBL_MIN_10_EXP (-307)

#define LDBL_MIN_10_EXP (-4931)

#define FLT_MAX_EXP (+128)

#define DBL_MAX_EXP (+1024)

#define LDBL_MAX_EXP (+16384)

#define FLT_EPSILON 1.192092896E-07F

#define DBL_EPSILON 2.2204460492503131E-16

#if defined(__sparc)

#define LDBL_EPSILON 1.925929944387235853055977942584927319E-34L

#elif defined(__i386)

#define LDBL_EPSILON 1.0842021724855044340075E-19L

#endif

#define FLT_MIN 1.175494351E-38F

#define DBL_MIN 2.2250738585072014E-308

#if defined(__sparc)

#define LDBL_MIN 3.362103143112093506262677817321752603E-4932L

#elif defined(__i386)

#define LDBL_MIN 3.3621031431120935062627E-4932L

#endif

Here are the values or expressions for the macros specified in <limits.h>:

#define INT8_MAX (127)

#define INT16_MAX (32767)

#define INT32_MAX (2147483647)

#define INT64_MAX (9223372036854775807LL)

#define INT8_MIN (-128)

#define INT16_MIN (-32767-1)

#define INT32_MIN (-2147483647-1)

#define INT64_MIN (-9223372036854775807LL-1)

#define UINT8_MAX (255U)

#define UINT16_MAX (65535U)

#define UINT32_MAX (4294967295U)

#define UINT64_MAX (18446744073709551615ULL)

#define INT_LEAST8_MIN INT8_MIN

#define INT_LEAST16_MIN INT16_MIN

#define INT_LEAST32_MIN INT32_MIN

#define INT_LEAST64_MIN INT64_MIN

C.1 Implementation-defined Behavior (J.3)

Sun Studio 12: C User's Guide •332

#define INT_LEAST8_MAX INT8_MAX

#define INT_LEAST16_MAX INT16_MAX

#define INT_LEAST32_MAX INT32_MAX

#define INT_LEAST64_MAX INT64_MAX

#define UINT_LEAST8_MAX UINT8_MAX

#define UINT_LEAST16_MAX UINT16_MAX

#define UINT_LEAST32_MAX UINT32_MAX

#define UINT_LEAST64_MAX UINT64_MAX

■ Here are the values or expressions for the macros specified in <stdint.h>:

#define INT_FAST8_MIN INT8_MIN

#define INT_FAST16_MIN INT16_MIN

#define INT_FAST32_MIN INT32_MIN

#define INT_FAST64_MIN INT64_MIN

#define INT_FAST8_MAX INT8_MAX

#define INT_FAST16_MAX INT16_MAX

#define INT_FAST32_MAX INT32_MAX

#define INT_FAST64_MAX INT64_MAX

#define UINT_FAST8_MAX UINT8_MAX

#define UINT_FAST16_MAX UINT16_MAX

#define UINT_FAST32_MAX UINT32_MAX

#define UINT_FAST64_MAX UINT64_MAX

■ The number, order, and encoding of bytes in any object (when not explicitly specified in this
International Standard) (6.2.6.1).

The implementation-defined number, order, and encodings of objects not explicitly specified in
the 1999 C standard have be defined elsewhere in this chapter.

■ The value of the result of the sizeof operator (6.5.3.4).

The following table lists the results for sizeof.

TABLE C–4 Results From the sizeofOperator in Bytes

Type Size in Bytes

char 1

short 2

int 4

long 4

long v9 8

C.1 Implementation-defined Behavior (J.3)

Appendix C • Implementation-Defined ISO/IEC C99 Behavior 333

TABLE C–4 Results From the sizeofOperator in Bytes (Continued)
Type Size in Bytes

long long 8

float 4

double 8

long double (SPARC) 16

long double (x86) 12

pointer 4

pointer v9 8

_Complex float 8

_Complex double 16

_Complex long double 32

_Imaginary float 4

_Imaginary double 8

_Imaginary long double (SPARC) 16

_Imaginary long double (x86) 12

C.1.14 Locale-specific Behavior (J.4)
The following characteristics of a hosted environment are locale-specific and are required to be
documented by the implementation:

■ Additional members of the source and execution character sets beyond the basic character
set (5.2.1).
Locale-specific (no extension in C locale).

■ The presence, meaning, and representation of additional multibyte characters in the
execution character set beyond the basic character set (5.2.1.2).
There are no multibyte characters present in the execution characters set in the default or C
locales.

■ The shift states used for the encoding of multibyte characters (5.2.1.2).
There are no shift states.

■ The direction of writing of successive printing characters (5.2.2).
Printing is always left to right.

■ The decimal-point character (7.1.1).

C.1 Implementation-defined Behavior (J.3)

Sun Studio 12: C User's Guide •334

Locale-specific (“.” in C locale).
■ The set of printing characters (7.4, 7.25.2).

Locale-specific (“.” in C locale).
■ The set of control characters (7.4, 7.25.2).

The control character set is comprised of horizontal tab, vertical tab, form feed, alert,
backspace, carriage return, and new line.

■ The sets of characters tested for by the isalpha, isblank, islower, ispunct, isspace,
isupper, iswalpha, iswblank, iswlower, iswpunct, iswspace, or iswupper functions
(7.4.1.2, 7.4.1.3, 7.4.1.7, 7.4.1.9, 7.4.1.10, 7.4.1.11, 7.25.2.1.2, 7.25.2.1.3, 7.25.2.1.7, 7.25.2.1.9,
7.25.2.1.10, 7.25.2.1.11).

See the isalpha(3C) and iswalpha(3C) man pages for descriptions of isalpha() and
iswalpha() as well as information on the related macros mentioned above. Note that their
behaviors can be modified by changing locale.

■ The native environment (7.11.1.1).

The native environment is specified by the LANG and LC_* environment variables as
described in the setlocale(3C) man page. However, if these environment variables are not
set, the native environment is set to the C locale.

■ Additional subject sequences accepted by the numeric conversion functions (7.20.1,
7.24.4.1).

The radix character is defined in the program’s locale (category LC_NUMERIC), and may be
defined as something other than a period (.).

■ The collation sequence of the execution character set (7.21.4.3, 7.24.4.4.2).

Locale-specific (ASCII collation in C locale).
■ The contents of the error message strings set up by the strerror function (7.21.6.2).

If the application is linked with -lintl, then messages returned by this function are in the
native language specified by the LC_MESSAGES locale category. Otherwise they are in the C
locale.

■ The formats for time and date (7.23.3.5, 7.24.5.1).

Locale-specific. Formats for the C locale are shown in the tables below.

The names of the months are specified below:

TABLE C–5 The Names of the Months

January May September

February June October

March July November

C.1 Implementation-defined Behavior (J.3)

Appendix C • Implementation-Defined ISO/IEC C99 Behavior 335

TABLE C–5 The Names of the Months (Continued)
April August December

The names of the days of the week are specified below:

TABLE C–6 Days and Abbreviated Days of the Week

Days Abbreviated Days

Sunday Thursday Sun Thu

Monday Friday Mon Fri

Tuesday Saturday Tue Sat

Wednesday Wed

The format for time is:

%H:%M:%S

The format for date is:

%m/%d/ -Xc mode.

The formats for AM and PM designation are: AM PM

■ Character mappings that are supported by the towctrans function (7.25.1).
The rules of the coded character set defined by character mapping information in the
program’s locale (category LC_CTYPE) may provide for character mappings other than
tolower and toupper. Refer to the Solaris Internationalization Guide For Developers, for
details of available locales and their definitions.

■ Character classifications that are supported by the iswctype function (7.25.1).
See the Solaris Internationalization Guide For Developers, for details of available locales and
any non-standard reserved character classifications.

C.1 Implementation-defined Behavior (J.3)

Sun Studio 12: C User's Guide •336

Supported Features of C99

This appendix lists the supported features of the ISO/IEC 9899:1999, Programming Language -
C standard.

The -xc99 flag controls compiler recognition of the implemented features. For more
information on the syntax of -xc99, see “B.2.73 -xc99[=o]” on page 252.

Note – Though the compiler defaults to supporting the features of C99 listed below, standard
headers provided by the Solaris software in /usr/include do not yet conform with the 1999
ISO/IEC C standard. If error messages are encountered, try using -xc99=none to obtain the
1990 ISO/IEC C standard behavior for these headers.

D.1 Discussion and Examples
This appendix provides discussions and examples for some of the following supported features:
■ Sub-clause 5.2.4.2.2 Characteristics of floating types <float.h>
■ Sub-clause 6.2.5 _Bool
■ Sub-clause 6.2.5 _Complex type

The Solaris 8 and Solaris 9 operating systems provide a partial implementation of _Complex
data types. _Complex data are fully supported beginning in the Solaris 10 software. Do not
use -lcplxsupp on the Solaris 10 OS.

■ Sub-clause 6.3.2.1 Conversion of arrays to pointers not limited to lvalues
■ Sub-clause 6.4.1 Keywords
■ Sub-clause 6.4.2.2 Predefined identifiers
■ 6.4.3 Universal character names
■ Sub-clause 6.4.4.2 Hexadecimal floating-point literals
■ Sub-clause 6.4.9 Comments

DA P P E N D I X D

337

■ Sub-clause 6.5.2.2 Function calls
■ Sub-clause 6.5.2.5 Compound literals
■ Sub-clause 6.7.2 Type specifiers
■ Sub-clause 6.7.2.1 Structure and union specifiers
■ Sub-clause 6.7.3 Type Qualifier
■ Sub-clause 6.7.4 Function specifiers
■ Sub-clause 6.7.5.2 Array declarator
■ Sub-clause 6.7.8 Initialization
■ Sub-clause 6.8.2 Compound statement
■ Sub-clause 6.8.5 Iteration statements
■ Sub-clause 6.10.3 Macro replacement
■ Sub-clause 6.10.6 STDC pragmas
■ Sub-clause 6.10.8 __STDC_IEC_559 and __STDC_IEC_559_COMPLEX macros
■ Sub-clause 6.10.9 Pragma operator

D.1.1 Precision of Floating Point Evaluators
5.2.4.2.2 Characteristics of floating types <float.h>

The values of operations with floating operands, and the values that are subject to both the usual
arithmetic conversions and to floating constants are evaluated to a format whose range and
precision may be greater than required by the type. The use of evaluation formats is
characterized by the implementation-defined value of FLT_EVAL_METHOD:

TABLE D–1 The FLT_EVAL_METHODValues

Value Meaning

-1 Indeterminable.

0 The compiler evaluates all operations and constants just to the range and precision
of the type.

1 The compiler evaluates operations and constants of type float and double to the
range and precision of a double. Evaluate long double operations and constants to
the range and precision of a long double.

2 The compiler evaluates all operations and constants to the range and precision of a
long double.

When you include float.h on SPARC architectures, FLT_EVAL_METHOD expands to 0 by default
and all floating point expressions are evaluated according to their type.

D.1 Discussion and Examples

Sun Studio 12: C User's Guide •338

When you include float.h on x86 architectures, FLT_EVAL_METHOD expands to -1 by default
(except when -xarch=sse2 or -xarch=amd64), and all floating point constant expressions are
evaluated according to their type and all other floating point expressions are evaluated as long
double.

When you specify -flteval=2 and include float.h, FLT_EVAL_METHOD expands to 2 and all
floating expressions are evaluated as long double. See “B.2.20 -flteval[={any|2}]” on page 227
for more information.

When you specify -xarch=sse2 or -xarch=amd64 on x86, and include float.h,
FLT_EVAL_METHOD expands to 0 and all floating point expressions are evaluated according to
their type.

The -Xt option does not affect the expansion of FLT_EVAL_METHOD, even though float
expressions are evaluated as double. See “B.2.63 -X[c|a|t|s]” on page 240 for more information.

The -fsingle option causes float expressions to be evaluated with single precision. See “B.2.27
-fsingle” on page 230 for more information.

When you specify -fprecision on x86 architectures with -xarch=sse2 or -xarch=amd64 and
include float.h, FLT_EVAL_METHOD expands to -1.

D.1.2 C99 Keywords
6.4.1 Keywords

The C99 standard introduces the following new keywords. The compiler issues a warning if you
use these keywords as identifiers while compiling with -xc99=none. Without -xc99=none the
compiler issues a warning or error messages for use of these keywords as identifiers depending
on the context.

■ inline

■ _Imaginary

■ _Complex

■ _Bool

■ restrict

D.1.2.1 Using the restrictKeyword
An object that is accessed through a restrict qualified pointer requires that all accesses to that
object use, directly or indirectly, the value of that particular restrict qualified pointer. Any
access to the object through any other means may result in undefined behavior. The intended
use of the restrict qualifier is to allow the compiler to make assumptions that promote
optimizations.

See “3.8.2 Restricted Pointers” on page 80 for examples and an explanation on how to use the
restrict qualifier effectively.

D.1 Discussion and Examples

Appendix D • Supported Features of C99 339

D.1.3 __func__ Support
6.4.2.2 Predefined identifiers

The compiler provides support for the predefined identifier __func__. __func__ is defined as an
array of chars which contains the name of the current function in which __func__ appears.

D.1.4 Universal Character Names (UCN)
6.4.3 Universal character names

UCN allows the use of any character in a C source, not just English characters. A UCN has the
format:

■ \u 4_hex_digits_value
■ \U 8_hex_digits_value

A UCN must not specify a value less than 00A0 other than 0024 ($), 0040 (@), or 0060 (?), nor a
value in the range D800 through DFFF inclusive.

UCN may be used in identifiers, character constants, and string literals to designate characters
that are not in the C basic character set.

The UCN \unnnnnnnn designates the character whose eight-digit short identifier (as specified
by ISO/IEC 10646) is nnnnnnnn. Similarly, the universal character name ¯nnnn designates the
character whose four-digit short identifier is nnnn (and whose eight-digit short identifier is
0000nnnn).

D.1.5 Commenting Code With //
6.4.9 Comments

The characters // introduce a comment that includes all multibyte characters up to, but not
including, the next new-line character except when the // characters appear within a character
constant, a string literal, or a comment.

D.1.6 Disallowed Implicit int and Implicit Function
Declarations
6.5.2.2 Function calls

Implicit declarations are no longer allowed in the 1999 C standard as they were in the 1990 C
standard. Previous versions of the C compiler issued warning messages about implicit
definitions only with -v (verbose). These messages and new additional warnings about implicit
definitions, are now issued whenever identifiers are implicitly defined as int or functions.

D.1 Discussion and Examples

Sun Studio 12: C User's Guide •340

This change is very likely to be noticed by nearly all users of this compiler because it can lead to
a large number of warning messages. Common causes include a failure to include the
appropriate system header files that declare functions being used, like printf which needs
<stdio.h> included. The 1990 C standard behavior of accepting implicit declarations silently
can be restored using -xc99=none.

The C compiler now generates a warning for an implicit function declaration:

example% cat test.c

void main()

{

printf("Hello, world!\n");
}

example% cc test.c

"test.c", line 3: warning: implicit function declaration: printf

example%

D.1.7 Declarations Using Implicit int
6.7.2 Type specifiers:

At least one type specifier shall be given in the declaration specifiers in each declaration. See also
“D.1.6 Disallowed Implicit int and Implicit Function Declarations” on page 340.

The C compiler now issues warnings on any implicit int declaration as in the following
example:

example% more test.c

volatile i;

const foo()

{

return i;

}

example% cc test.c

"test.c", line 1: warning: no explicit type given

"test.c", line 3: warning: no explicit type given

example%

D.1.8 Flexible Array Members
6.7.2.1 Structure and union specifiers

Also known as the “struct hack”. Allows the last member of a struct to be an array of zero length,
such as int foo[]; Such a struct is commonly used as the header to access malloced memory.

D.1 Discussion and Examples

Appendix D • Supported Features of C99 341

For example, in this structure, struct s { int n; double d[]; } S;, the array, d, is an
incomplete array type. The C compiler does not count any memory offset for this member of S.
In other words, sizeof(struct s) is the same as the offset of S.n.

d can be used like any, ordinary, array-member. S.d[10] = 0;.

Without the C compiler’s support for an incomplete array type, you would define and declare a
structure as the following example, called DynamicDouble, shows:

typedef struct { int n; double d[1];) DynamicDouble;

Note that the array d is not an incomplete array type and is declared with one member.

Next, you declare a pointer dd and allocate memory thus:

DynamicDouble *dd = malloc(sizeof(DynamicDouble)+(actual_size-1)*sizeof(double));

You then store the size of the offset in S.n thus:

dd->n = actual_size;

Because the compiler supports incomplete array types, you can achieve the same result without
declaring the array with one member:

typedef struct { int n; double d[]; } DynamicDouble;

You now declare a pointer dd and allocate memory as before, except that it is no longer
necessary to subtract one from actual_size:

DynamicDouble *dd = malloc (sizeof(DynamicDouble) + (actual_size)*sizeof(double));

The offset is stored, as before, in S.n thus:

dd->n = actual_size;

D.1.9 Idempotent Qualifiers
6.7.3 Type qualifiers:

If the same qualifier appears more than once in the same specifier-qualifier-list, either directly
or through one or more typedefs, the behavior is the same as when the type qualifier appears
only once.

In C90, the following code would cause an error:

%example cat test.c

const const int a;

D.1 Discussion and Examples

Sun Studio 12: C User's Guide •342

int main(void) {

return(0);

}

%example cc -xc99=none test.c

"test.c", line 1: invalid type combination

However, with C99, the C compiler accepts multiple qualifiers.

%example cc -xc99 test.c

%example

D.1.10 inline Functions
6.7.4 Function specifiers

The C99 function-specifier inline has been added. inline is fully functional for functions with
both internal and external linkage. Inline function definitions and extern inline functions now
work as specified by the 1999 C ISO standard.

An inline function definition is a function defined with the keyword inline, and without either
the keywords static or extern, and all prototypes appearing within the source (or included files)
also contain the keyword inline without either the keywords static or extern.

An inline function definition does not provide an external definition for the function. Any
function call appearing in the source file containing an inline definition will either be satisfied
by inlining the function definition at the call site, or by a reference to an externally defined
function.

The compiler will inline calls to inline definitions only when optimizing and only when the
compiler optimizer believes it is profitable to do so. Otherwise a call to an external function will
be made. Therefore any program containing inline definitions should link with an object file
containing an extern function definition.

Use of both the keywords extern and inline with a function definition (or on any prototype in
the file continuing the function definition) will result in an external function being defined in
that object file. To be compatible with C++ linking with objects that contain multiple
definitions of extern inline functions will result in the linker choosing just one of these
functions to satisfy any external references.

To get standard conforming behavior, old code must be recompiled using the current compiler.
However, if you have instances of extern inline function definitions in old C and C++ binaries
(pre C/C++ 5.6) and you wish to link those binaries with new C and C++ binaries without
changing the behavior of the old binaries, specify -features=no%extinl.

D.1 Discussion and Examples

Appendix D • Supported Features of C99 343

D.1.11 Static and Other Type Qualifiers Allowed in Array
Declarators
6.7.5.2 Array declarator:

The keyword static can now appear in the Array declarator of a parameter in a function
declarator to indicate that the compiler can assume at least that many elements will be passed to
the function being declared. Allows the optimizer to make assumptions about which it
otherwise could not determine.

The C compiler adjusts array parameters into pointers therefore void foo(int a[]) is the same
as void foo(int *a).

If you specify type qualifiers such as void foo(int * restrict a);, the C compiler expresses it
with array syntax void foo(int a[restrict]); which is essentially the same as declaring a
restricted pointer.

The C compiler also uses a static qualifier to preserve information about the array size. For
example, if you specify void foo(int a[10]) the compiler still expresses it as void foo(int *a).
Use a static qualifier as follows, void foo(int a[static 10]), to let the compiler know that
pointer a is not NULL and that it provides access to an integer array of at least ten elements.

D.1.12 Variable Length Arrays (VLA):
6.7.5.2 Array declarators

VLAs are allocated on the stack as if by calling the alloca function. Their lifetime, regardless of
their scope, is the same as any data allocated on the stack by calling alloca; until the function
returns. The space allocated is freed when the stack is released upon returning from the
function in which the VLA is allocated.

Not all constraints are yet enforced for variable length arrays. Constraint violations lead to
undefined results.

#include <stdio.h>

void foo(int);

int main(void) {

foo(4);

return(0);

}

void foo (int n) {

int i;

int a[n];

D.1 Discussion and Examples

Sun Studio 12: C User's Guide •344

for (i = 0; i < n; i++)

a[i] = n-i;

for (i = n-1; i >= 0; i--)

printf("a[%d] = %d\n", i, a[i]);

}

example% cc test.c

example% a.out

a[3] = 1

a[2] = 2

a[1] = 3

a[0] = 4

D.1.13 Designated Initializers
6.7.8 Initialization

Designated initializers provide a mechanism for initializing sparse arrays, a practice common in
numerical programming.

Designated initializers allows initialization of sparse structures, common in systems
programming, and allows initialization of unions via any member, regardless of whether or not
it is the first member.

Consider these examples. This first example shows how designated initializers are used to
initialize an array:

enum { first, second, third };

const char *nm[] = {

[third] = "third member",
[first] = "first member",
[second] = "second member",
};

The following example demonstrates how designated initializers are used to initialize the fields
of a struct object:

division_t result = { .quot = 2, .rem = -1 };

The following example shows how designated initializers can be used to initialize complicated
structures that might otherwise be misunderstood:

struct { int z[3], count; } w[] = { [0].z = {1}, [1].z[0] = 2 };

An array can be created from both ends by using a single designator:

int z[MAX] = {1, 3, 5, 7, 9, [MAX-5] = 8, 6, 4, 2, 0};

D.1 Discussion and Examples

Appendix D • Supported Features of C99 345

If MAX is greater than ten, the array will contain zero-valued elements in the middle; if MAX is less
than ten, some of the values provided by the first five initializers will be overridden by the
second five.

Any member of a union can be initialized:

union { int i; float f;} data = { .f = 3.2 };

D.1.14 Mixed Declarations and Code
6.8.2 Compound statement

The C compiler now accepts mixing type declarations with executable code as shown by the
following example:

#include <stdio.h>

int main(void){

int num1 = 3;

printf("%d\n", num1);

int num2 = 10;

printf("%d\n", num2);

return(0);

}

D.1.15 Declaration in for-Loop Statement
6.8.5 Iteration statements

The C compiler now accepts a type declaration as the first expression in a for loop-statement:

for (int i=0; i<10; i++){ //loop body };

The scope of any variable declared in the initialization statement of the for loop is the entire
loop (including controlling and iteration expressions).

D.1.16 Macros With a Variable Number of Arguments
6.10.3 Macro replacement

The C compiler accepts #define preprocessor directives of the following form:

#define identifier (...) replacement_list
#define identifier (identifier_list, ...) replacement_list

D.1 Discussion and Examples

Sun Studio 12: C User's Guide •346

If the identifier_list in the macro definition ends with an ellipses, it means that there will be
more arguments in the invocation than there are parameters in the macro definition, excluding
the ellipsis. Otherwise, the number of parameters in the macro definition, including those
arguments which consist of no preprocessing tokens, matches the number of arguments. Use
the identifier __VA_ARGS__ in the replacement list of a #define preprocessing directive which
uses the ellipsis notation in its arguments. The following example demonstrates the variable
argument list macro facilities.

#define debug(...) fprintf(stderr, __VA_ARGS__)

#define showlist(...) puts(#__VA_ARGS__)

#define report(test, ...) ((test)?puts(#test):\

printf(__VA_ARGS__))

debug(“Flag”);

debug(“X = %d\n”,x);

showlist(The first, second, and third items.);

report(x>y, “x is %d but y is %d”, x, y);

which results in the following:

fprintf(stderr, “Flag”);

fprintf(stderr, “X = %d\n”, x);

puts(“The first, second, and third items.”);

((x>y)?puts(“x>y”):printf(“x is %d but y is %d”, x, y));

D.1.17 _Pragma
6.10.9 Pragma operator

A unary operator expression of the form: _Pragma (string-literal) is processed as follows:

■ The L prefix of the string literal is deleted, if it is present.
■ The leading and trailing double-quotes are deleted.
■ Each escape sequence ’ is replaced by a double-quote.
■ Each escape sequence \\ is replaced by a single backslash.

The resulting sequence of preprocessing tokens are processed as if they were the preprocessor
tokens in a pragma directive.

The original four preprocessing tokens in the unary operator expression are removed.

_Pragma offers an advantage over #pragma in that _Pragma can be used in a macro definition.

_Pragma("string") behaves exactly the same as #pragma string. Consider the following
example. First, the example’s source code is listed and then the example’s source is listed after
the preprocessor has made it’s pass.

D.1 Discussion and Examples

Appendix D • Supported Features of C99 347

example% cat test.c

#include <omp.h>

#include <stdio.h>

#define Pragma(x) _Pragma(#x)

#define OMP(directive) Pragma(omp directive)

void main()

{

omp_set_dynamic(0);

omp_set_num_threads(2);

OMP(parallel)

{

printf("Hello!\n");
}

}

example% cc test.c -P -xopenmp -x03

example% cat test.i

Here’s the source after the preprocessor has finished.

void main()

{

omp_set_dynamic(0);

omp_set_num_threads(2);

pragma omp parallel

{

printf("Hellow!\n");
}

}

example% cc test.c -xopenmp -->

example% ./a.out

Hello!

Hello!

example%

D.1 Discussion and Examples

Sun Studio 12: C User's Guide •348

Implementation-Defined ISO/IEC C90 Behavior

The ISO/IEC 9899:1990, Programming Languages- C standard specifies the form and
establishes the interpretation of programs written in C. However, this standard leaves a number
of issues as implementation-defined, that is, as varying from compiler to compiler. This chapter
details these areas. They can be readily compared to the ISO/IEC 9899:1990 standard itself:

■ Each item uses the same section text as found in the ISO standard.
■ Each item is preceded by its corresponding section number in the ISO standard.

E.1 Implementation Compared to the ISO Standard

E.1.1 Translation (G.3.1)
The numbers in parentheses correspond to section numbers in the ISO/IEC 9899:1990
standard.

E.1.1.1 (5.1.1.3) Identification of diagnostics:
Error messages have the following format:

filename, line line number: message

Warning messages have the following format:

filename, line line number: warning message

Where:

■ filename is the name of the file containing the error or warning
■ line number is the number of the line on which the error or warning is found
■ message is the diagnostic message

EA P P E N D I X E

349

E.1.2 Environment (G.3.2)

E.1.2.1 (5.1.2.2.1) Semantics of arguments to main:
int main (int argc, char *argv[])

{

....

}

argc is the number of command-line arguments with which the program is invoked with. After
any shell expansion, argc is always equal to at least 1, the name of the program.

argv is an array of pointers to the command-line arguments.

(5.1.2.3) What constitutes an interactive device:

An interactive device is one for which the system library call isatty() returns a nonzero value.

E.1.3 Identifiers (G.3.3)

E.1.3.1 (6.1.2) The number of significant initial characters (beyond 31) in an
identifier without external linkage:
The first 1,023 characters are significant. Identifiers are case-sensitive.

(6.1.2) The number of significant initial characters (beyond 6) in an identifier
with external linkage:

The first 1,023 characters are significant. Identifiers are case-sensitive.

E.1.4 Characters (G.3.4)

E.1.4.1 (5.2.1) The members of the source and execution character sets, except
as explicitly specified in the Standard:
Both sets are identical to the ASCII character sets, plus locale-specific extensions.

(5.2.1.2) The shift states used for the encoding of multibyte characters:

There are no shift states.

E.1 Implementation Compared to the ISO Standard

Sun Studio 12: C User's Guide •350

(5.2.4.2.1) The number of bits in a character in the execution character set:

There are 8 bits in a character for the ASCII portion; locale-specific multiple of 8 bits for
locale-specific extended portion.

(6.1.3.4) The mapping of members of the source character set (in character and
string literals) to members of the execution character set:

Mapping is identical between source and execution characters.

(6.1.3.4) The value of an integer character constant that contains a character or
escape sequence not represented in the basic execution character set or the
extended character set for a wide character constant:

It is the numerical value of the rightmost character. For example, ’\q’ equals ’q’. A warning is
emitted if such an escape sequence occurs.

(3.1.3.4) The value of an integer character constant that contains more than one
character or a wide character constant that contains more than one multibyte
character:

A multiple-character constant that is not an escape sequence has a value derived from the
numeric values of each character.

(6.1.3.4) The current locale used to convert multibyte characters into
corresponding wide characters (codes) for a wide character constant:

The valid locale specified by LC_ALL, LC_CTYPE, or LANG environment variable.

(6.2.1.1) Whether a plain char has the same range of values as signed char or
unsigned char:

A char is treated as a signed char (SPARC) (x86).

E.1 Implementation Compared to the ISO Standard

Appendix E • Implementation-Defined ISO/IEC C90 Behavior 351

E.1.5 Integers (G.3.5)

E.1.5.1 (6.1.2.5) The representations and sets of values of the various types of
integers:

TABLE E–1 Representations and Sets of Values of Integers

Integer Bits Minimum Maximum

char (SPARC) (x86) 8 -128 127

signed char 8 -128 127

unsigned char 8 0 255

short 16 -32768 32767

signed short 16 -32768 32767

unsigned short 16 0 65535

int 32 -2147483648 2147483647

signed int 32 -2147483648 2147483647

unsigned int 32 0 4294967295

long (SPARC) v8 32 -2147483648 2147483647

long (SPARC) v9 64 -9223372036854775808 9223372036854775807

signed long (SPARC) v8 32 -2147483648 2147483647

signed long (SPARC) v9 64 -9223372036854775808 9223372036854775807

unsigned long (SPARC) v8 32 0 4294967295

unsigned long (SPARC) v9 64 0 18446744073709551615

long long 64 -9223372036854775808 9223372036854775807

signed long long
1 64 -9223372036854775808 9223372036854775807

unsigned long long
1 64 0 18446744073709551615

1 Not valid in -Xc mode

(6.2.1.2) The result of converting an integer to a shorter signed integer, or the
result of converting an unsigned integer to a signed integer of equal length, if
the value cannot be represented:

When an integer is converted to a shorter signed integer, the low order bits are copied from the
longer integer to the shorter signed integer. The result may be negative.

E.1 Implementation Compared to the ISO Standard

Sun Studio 12: C User's Guide •352

When an unsigned integer is converted to a signed integer of equal size, the low order bits are
copied from the unsigned integer to the signed integer. The result may be negative.

(6.3) The results of bitwise operations on signed integers:

The result of a bitwise operation applied to a signed type is the bitwise operation of the
operands, including the sign bit. Thus, each bit in the result is set if—and only if—each of the
corresponding bits in both of the operands is set.

(6.3.5) The sign of the remainder on integer division:

The result is the same sign as the dividend; thus, the remainder of -23/4 is -3.

(6.3.7) The result of a right shift of a negative-valued signed integral type:

The result of a right shift is a signed right shift.

E.1.6 Floating-Point (G.3.6)

E.1.6.1 (6.1.2.5) The representations and sets of values of the various types of
floating-point numbers:

TABLE E–2 Values for a float

float

Bits 32

Min 1.17549435E-38

Max 3.40282347E+38

Epsilon 1.19209290E-07

TABLE E–3 Values for a double

double

Bits 64

Min 2.2250738585072014E-308

Max 1.7976931348623157E+308

Epsilon 2.2204460492503131E-16

E.1 Implementation Compared to the ISO Standard

Appendix E • Implementation-Defined ISO/IEC C90 Behavior 353

TABLE E–4 Values for long double

long double

Bits 128 (SPARC)

80 (x86)

Min 3.362103143112093506262677817321752603E-4932 (SPARC)

3.3621031431120935062627E-4932 (x86)

Max 1.189731495357231765085759326628007016E+4932 (SPARC)

1.1897314953572317650213E4932 (x86)

Epsilon 1.925929944387235853055977942584927319E-34 (SPARC)

1.0842021724855044340075E-19 (x86)

(6.2.1.3) The direction of truncation when an integral number is converted to a
floating-point number that cannot exactly represent the original value:

Numbers are rounded to the nearest value that can be represented.

(6.2.1.4) The direction of truncation or rounding when a floating- point number
is converted to a narrower floating-point number:

Numbers are rounded to the nearest value that can be represented.

E.1.7 Arrays and Pointers (G.3.7)

E.1.7.1 (6.3.3.4, 7.1.1) The type of integer required to hold the maximum size
of an array; that is, the type of the sizeofoperator, size_t:
unsigned int as defined in stddef.h.

unsigned long for -Xarch=v9

(6.3.4) The result of casting a pointer to an integer, or vice versa:

The bit pattern does not change for pointers and values of type int, long, unsigned int and
unsigned long.

E.1 Implementation Compared to the ISO Standard

Sun Studio 12: C User's Guide •354

(6.3.6, 7.1.1) The type of integer required to hold the difference between two
pointers to members of the same array, ptrdiff_t:

int as defined in stddef.h.

long for -Xarch=v9

E.1.8 Registers (G.3.8)

E.1.8.1 (6.5.1) The extent to which objects can actually be placed in registers
by use of the register storage-class specifier:
The number of effective register declarations depends on patterns of use and definition within
each function and is bounded by the number of registers available for allocation. Neither the
compiler nor the optimizer is required to honor register declarations.

E.1.9 Structures, Unions, Enumerations, and Bit-Fields
(G.3.9)

E.1.9.1 (6.3.2.3) A member of a union object is accessed using a member of a
different type:
The bit pattern stored in the union member is accessed, and the value interpreted, according to
the type of the member by which it is accessed.

(6.5.2.1) The padding and alignment of members of structures.

TABLE E–5 Padding and Alignment of Structure Members

Type Alignment Boundary Byte Alignment

char Byte 1

short Halfword 2

int Word 4

long (SPARC) v8 Word 4

long (SPARC) v9 Doubleword 8

float (SPARC) Word 4

E.1 Implementation Compared to the ISO Standard

Appendix E • Implementation-Defined ISO/IEC C90 Behavior 355

TABLE E–5 Padding and Alignment of Structure Members (Continued)
Type Alignment Boundary Byte Alignment

double (SPARC) Doubleword (SPARC)

Word (x86)

8 (SPARC)

4 (x86)

long double (SPARC) v8 Doubleword (SPARC)

Word (x86)

8 (SPARC)

4 (x86)

long double (SPARC) v9 Quadword 16

pointer (SPARC) v8 Word 4

pointer (SPARC) v9 Quadword 8

long long Doubleword (SPARC)

Word (x86)

8 (SPARC)

4 (x86)

Structure members are padded internally, so that every element is aligned on the appropriate
boundary.

Alignment of structures is the same as its more strictly aligned member. For example, a struct
with only chars has no alignment restrictions, whereas a struct containing a double would be
aligned on an 8-byte boundary.

(6.5.2.1) Whether a plain int bit-field is treated as a signed int bit-field or as
an unsigned int bit-field:

It is treated as an unsigned int.

(6.5.2.1) The order of allocation of bit-fields within an int:

Bit-fields are allocated within a storage unit from high-order to low-order.

(6.5.2.1) Whether a bit-field can straddle a storage-unit boundary:

Bit-fields do not straddle storage-unit boundaries.

(6.5.2.2) The integer type chosen to represent the values of an enumeration
type:

This is an int.

E.1 Implementation Compared to the ISO Standard

Sun Studio 12: C User's Guide •356

E.1.10 Qualifiers (G.3.10)

E.1.10.1 (6.5.5.3) What constitutes an access to an object that has
volatile-qualified type:
Each reference to the name of an object constitutes one access to the object.

E.1.11 Declarators (G.3.11)

E.1.11.1 (6.5.4) The maximum number of declarators that may modify an
arithmetic, structure, or union type:
No limit is imposed by the compiler.

E.1.12 Statements (G.3.12)

E.1.12.1 (6.6.4.2) The maximum number of case values in a switch statement:
No limit is imposed by the compiler.

E.1.13 Preprocessing Directives (G.3.13)

E.1.13.1 (6.8.1) Whether the value of a single-character character constant in a
constant expression that controls conditional inclusion matches the
value of the same character constant in the execution character set:
A character constant within a preprocessing directive has the same numeric value as it has
within any other expression.

(6.8.1) Whether such a character constant may have a negative value:
Character constants in this context may have negative values (SPARC) (x86).

(6.8.2) The method for locating includable source files:
A file whose name is delimited by < > is searched for first in the directories named by the -I
option, and then in the standard directory. The standard directory is /usr/include, unless the
-YI option is used to specify a different default location.

A file whose name is delimited by quotes is searched for first in the directory of the source file
that contains the #include, then in directories named by the -I option, and last in the standard
directory.

E.1 Implementation Compared to the ISO Standard

Appendix E • Implementation-Defined ISO/IEC C90 Behavior 357

If a file name enclosed in < > or double quotes begins with a / character, the file name is
interpreted as a path name beginning in the root directory. The search for this file begins in the
root directory only.

(6.8.2) The support of quoted names for includable source files:

Quoted file names in include directives are supported.

(6.8.2) The mapping of source file character sequences:

Source file characters are mapped to their corresponding ASCII values.

(6.8.6) The behavior on each recognized #pragmadirective:

The following pragmas are supported. See “2.8 Pragmas” on page 41 for more information.
■ align integer (variable[, variable])
■ does_not_read_global_data (funcname [, funcname])
■ does_not_return (funcname[, funcname])
■ does_not_write_global_data (funcname[, funcname])
■ error_messages (on|off|default, tag1[tag2... tagn])
■ fini (f1[, f2..., fn])
■ ident string
■ init (f1[, f2..., fn])
■ inline (funcname[, funcname])
■ int_to_unsigned (funcname)
■ MP serial_loop

■ MP serial_loop_nested

■ MP taskloop

■ no_inline (funcname[, funcname])
■ nomemorydepend

■ no_side_effect (funcname[, funcname])
■ opt_level (funcname[, funcname])
■ pack(n)
■ pipeloop(n)
■ rarely_called (funcname[, funcname])
■ redefine_extname old_extname new_extname
■ returns_new_memory (funcname[, funcname])
■ unknown_control_flow (name[, name])
■ unroll (unroll_factor)
■ weak (symbol1 [= symbol2])

(6.8.8) The definitions for __DATE__ and __TIME__when, respectively, the date
and time of translation are not available:

These macros are always available from the environment.

E.1 Implementation Compared to the ISO Standard

Sun Studio 12: C User's Guide •358

E.1.14 Library Functions (G.3.14)

E.1.14.1 (7.1.6) The null pointer constant to which the macro NULL expands:
NULL equals 0.

(7.2) The diagnostic printed by and the termination behavior of the assert
function:

The diagnostic is:

Assertion failed: statement. file filename, line number

Where:

■ statement is the statement which failed the assertion
■ filename is the name of the file containing the failure
■ line number is the number of the line on which the failure occurs

(7.3.1) The sets of characters tested for by the isalnum, isalpha, iscntrl,
islower, isprint, and isupper functions:

TABLE E–6 Character Sets Tested by isalpha, islower, etc.

isalnum ASCII characters A-Z, a-z and 0-9

isalpha ASCII characters A-Z and a-z, plus locale-specific single-byte letters

iscntrl ASCII characters with value 0-31 and 127

islower ASCII characters a-z

isprint Locale-specific single-byte printable characters

isupper ASCII characters A-Z

(7.5.1) The values returned by the mathematics functions on domain errors:

TABLE E–7 Values Returned on Domain Errors

Error Math Functions Compiler Modes

-Xs, -Xt -Xa, -Xc

DOMAIN acos(|x|>1) 0.0 0.0

DOMAIN asin(|x|>1) 0.0 0.0

E.1 Implementation Compared to the ISO Standard

Appendix E • Implementation-Defined ISO/IEC C90 Behavior 359

TABLE E–7 Values Returned on Domain Errors (Continued)
Error Math Functions Compiler Modes

-Xs, -Xt -Xa, -Xc

DOMAIN atan2(+-0,+-0) 0.0 0.0

DOMAIN y0(0) -HUGE -HUGE_VAL

DOMAIN y0(x<0) -HUGE -HUGE_VAL

DOMAIN y1(0) -HUGE -HUGE_VAL

DOMAIN y1(x<0) -HUGE -HUGE_VAL

DOMAIN yn(n,0) -HUGE -HUGE_VAL

DOMAIN yn(n,x<0) -HUGE -HUGE_VAL

DOMAIN log(x<0) -HUGE -HUGE_VAL

DOMAIN log10(x<0) -HUGE -HUGE_VAL

DOMAIN pow(0,0) 0.0 1.0

DOMAIN pow(0,neg) 0.0 -HUGE_VAL

DOMAIN pow(neg,non-integal) 0.0 NaN

DOMAIN sqrt(x<0) 0.0 NaN

DOMAIN fmod(x,0) x NaN

DOMAIN remainder(x,0) NaN NaN

DOMAIN acosh(x<1) NaN NaN

DOMAIN atanh(|x|>1) NaN NaN

(7.5.1) Whether the mathematics functions set the integer expression errno to
the value of the macro ERANGE on underflow range errors:

Mathematics functions, except scalbn, set errno to ERANGE when underflow is detected.

(7.5.6.4) Whether a domain error occurs or zero is returned when the fmod
function has a second argument of zero:

In this case, it returns the first argument with domain error.

(7.7.1.1) The set of signals for the signal function:

The following table shows the semantics for each signal as recognized by the signal function:

E.1 Implementation Compared to the ISO Standard

Sun Studio 12: C User's Guide •360

TABLE E–8 Semantics for signal Signals

Signal No. Default Event

SIGHUP 1 Exit hangup

SIGINT 2 Exit interrupt

SIGQUIT 3 Core quit

SIGILL 4 Core illegal instruction (not reset when caught)

SIGTRAP 5 Core trace trap (not reset when caught)

SIGIOT 6 Core IOT instruction

SIGABRT 6 Core Used by abort

SIGEMT 7 Core EMT instruction

SIGFPE 8 Core floating point exception

SIGKILL 9 Exit kill (cannot be caught or ignored)

SIGBUS 10 Core bus error

SIGSEGV 11 Core segmentation violation

SIGSYS 12 Core bad argument to system call

SIGPIPE 13 Exit write on a pipe with no one to read it

SIGALRM 14 Exit alarm clock

SIGTERM 15 Exit software termination signal from kill

SIGUSR1 16 Exit user defined signal 1

SIGUSR2 17 Exit user defined signal 2

SIGCLD 18 Ignore child status change

SIGCHLD 18 Ignore child status change alias

SIGPWR 19 Ignore power-fail restart

SIGWINCH 20 Ignore window size change

SIGURG 21 Ignore urgent socket condition

SIGPOLL 22 Exit pollable event occurred

SIGIO 22 Exit socket I/O possible

SIGSTOP 23 Stop stop (cannot be caught or ignored)

SIGTSTP 24 Stop user stop requested from tty

E.1 Implementation Compared to the ISO Standard

Appendix E • Implementation-Defined ISO/IEC C90 Behavior 361

TABLE E–8 Semantics for signal Signals (Continued)
Signal No. Default Event

SIGCONT 25 Ignore stopped process has been continued

SIGTTIN 26 Stop background tty read attempted

SIGTTOU 27 Stop background tty write attempted

SIGVTALRM 28 Exit virtual timer expired

SIGPROF 29 Exit profiling timer expired

SIGXCPU 30 Core exceeded cpu limit

SIGXFSZ 31 Core exceeded file size limit

SIGWAITINGT 32 Ignore process’s lwps are blocked

(7.7.1.1) The default handling and the handling at program startup for each
signal recognized by the signal function:

See above.

(7.7.1.1) If the equivalent of signal(sig, SIG_DFL); is not executed prior to
the call of a signal handler, the blocking of the signal that is performed:

The equivalent of signal(sig,SIG_DFL) is always executed.

(7.7.1.1) Whether the default handling is reset if the SIGILL signal is received by
a handler specified to the signal function:

Default handling is not reset in SIGILL.

(7.9.2) Whether the last line of a text stream requires a terminating new-line
character:

The last line does not need to end in a newline.

(7.9.2) Whether space characters that are written out to a text stream
immediately before a new-line character appear when read in:

All characters appear when the stream is read.

(7.9.2) The number of null characters that may be appended to data written to a
binary stream:

No null characters are appended to a binary stream.

E.1 Implementation Compared to the ISO Standard

Sun Studio 12: C User's Guide •362

(7.9.3) Whether the file position indicator of an append mode stream is initially
positioned at the beginning or end of the file:

The file position indicator is initially positioned at the end of the file.

(7.9.3) Whether a write on a text stream causes the associated file to be
truncated beyond that point:

A write on a text stream does not cause a file to be truncated beyond that point unless a
hardware device forces it to happen.

(7.9.3) The characteristics of file buffering:

Output streams, with the exception of the standard error stream (stderr), are by
default-buffered if the output refers to a file, and line-buffered if the output refers to a terminal.
The standard error output stream (stderr) is by default unbuffered.

A buffered output stream saves many characters, and then writes the characters as a block. An
unbuffered output stream queues information for immediate writing on the destination file or
terminal immediately. Line-buffered output queues each line of output until the line is
complete (a newline character is requested).

(7.9.3) Whether a zero-length file actually exists:

A zero-length file does exist since it has a directory entry.

(7.9.3) The rules for composing valid file names:

A valid file name can be from 1 to 1,023 characters in length and can use all character except the
characters null and / (slash).

(7.9.3) Whether the same file can be open multiple times:

The same file can be opened multiple times.

(7.9.4.1) The effect of the remove function on an open file:

The file is deleted on the last call which closes the file. A program cannot open a file which has
already been removed.

(7.9.4.2) The effect if a file with the new name exists prior to a call to the rename
function:

If the file exists, it is removed and the new file is written over the previously existing file.

E.1 Implementation Compared to the ISO Standard

Appendix E • Implementation-Defined ISO/IEC C90 Behavior 363

(7.9.6.1) The output for %p conversion in the fprintf function:

The output for %p is equivalent to %x.

(7.9.6.2) The input for %p conversion in the fscanf function:

The input for %p is equivalent to %x.

(7.9.6.2) The interpretation of a- character that is neither the first nor the last
character in the scan list for %[conversion in the fscanf function:

The- character indicates an inclusive range; thus, [0-9] is equivalent to [0123456789].

E.1.15 Locale-Specific Behavior (G.4)

E.1.15.1 (7.12.1) The local time zone and Daylight Savings Time:
The local time zone is set by the environment variable TZ.

(7.12.2.1) The era for the clock function

The era for the clock is represented as clock ticks with the origin at the beginning of the
execution of the program.

The following characteristics of a hosted environment are locale-specific:

(5.2.1) The content of the execution character set, in addition to the required
members:

Locale-specific (no extension in C locale).

(5.2.2) The direction of printing:

Printing is always left to right.

(7.1.1) The decimal-point character:

Locale-specific (“.” in C locale).

(7.3) The implementation-defined aspects of character testing and case
mapping functions:

Same as 4.3.1.

E.1 Implementation Compared to the ISO Standard

Sun Studio 12: C User's Guide •364

(7.11.4.4) The collation sequence of the execution character set:

Locale-specific (ASCII collation in C locale).

(7.12.3.5) The formats for time and date:

Locale-specific. Formats for the C locale are shown in the tables below. The names of the
months are:

TABLE E–9 Names of Months

January May September

February June October

March July November

April August December

The names of the days of the week are:

TABLE E–10 Days and Abbreviated Days of the Week

Days Abbreviated Days

Sunday Thursday Sun Thu

Monday Friday Mon Fri

Tuesday Saturday Tue Sat

Wednesday Wed

The format for time is:

%H:%M:%S

The format for date is:

%m/%d/%y

The formats for AM and PM designation are: AM PM

E.1 Implementation Compared to the ISO Standard

Appendix E • Implementation-Defined ISO/IEC C90 Behavior 365

366

ISO C Data Representations

This appendix describes how ISO C represents data in storage and the mechanisms for passing
arguments to functions. It is intended as a guide to programmers who want to write or use
modules in languages other than C and have those modules interface with C code.

F.1 Storage Allocation
The following table shows the data types and how they are represented.

Note – Storage allocated on the stack (identifiers with internal, or automatic, linkage) should be
limited to two gigabytes or less.

TABLE F–1 Storage Allocation for Data Types

Data Type Internal Representation

char elements A single 8-bit byte aligned on a byte boundary.

short integers Halfword (two bytes or 16 bits), aligned on a two-byte boundary

int 32 bits (four bytes or one word), aligned on a four-byte boundary

long 32 bits on v8 and x86 (four bytes or one word), aligned on a four-byte boundary

64 bits on v9 (eight bytes or two words) aligned on an eight-byte boundary)

pointer 32 bits on v8 and x86 (four bytes or one word), aligned on a four-byte boundary

64 bits on v9 (eight bytes or two words) aligned on an eight-byte boundary)

long long
1 (SPARC) 64 bits (eight bytes or two words), aligned on an eight-byte boundary

(x86) 64 bits (eight bytes or two words), aligned on a four-byte boundary
1
long long is not available in -Xc mode with -xc99=none.

FA P P E N D I X F

367

TABLE F–1 Storage Allocation for Data Types (Continued)
Data Type Internal Representation

float 32 bits (four bytes or one word), aligned on a four-byte boundary. A float has a
sign bit, 8-bit exponent, and 23-bit fraction.

double 64 bits (eight bytes or two words), aligned on an eight-byte boundary (SPARC) or
aligned on a four-byte boundary (x86). A double element has a sign bit, an 11-bit
exponent and a 52-bit fraction.

long double v8 (SPARC) 128 bits (16 bytes or four words), aligned on an eight-byte boundary. A
long double element has a sign bit, a 15-bit exponent and a 112-bit fraction.

v9 (SPARC) 128 bits (16 bytes or four words), aligned on a 16 byte boundary. A long

double element has a sign bit, a 15-bit exponent and a 112-bit fraction.

(x86) 96 bits (12 bytes or three words) aligned on a four-byte boundary. A long

double element has a sign bit, a 16-bit exponent, and a 64-bit fraction. 16 bits are
unused.

F.2 Data Representations
Bit numbering of any given data element depend on the architecture in use: SPARCstationTM

machines use bit 0 as the least significant bit, with byte 0 being the most significant byte. The
tables in this section describe the various representations.

F.2.1 Integer Representations
Integer types used in ISO C are short, int, long, and long long:

TABLE F–2 Representation of short

Bits Content

8- 15 Byte 0 (SPARC)

Byte 1 (x86)

0- 7 Byte 1 (SPARC)

Byte 0 (x86)

F.2 Data Representations

Sun Studio 12: C User's Guide •368

TABLE F–3 Representation of int

Bits Content

24- 31 Byte 0 (SPARC)

Byte 3 (x86)

16- 23 Byte 1 (SPARC)

Byte 2 (x86)

8- 15 Byte 2 (SPARC)

Byte 1 (x86)

0- 7 Byte 3 (SPARC)

Byte 0 (x86)

TABLE F–4 Representation of long on x86 and SPARC v8 versus SPARC v9

Bits Content

24- 31 Byte 0 (SPARC) v8

Byte 4 (SPARC) v9

Byte 3 (x86)

16- 23 Byte 1 (SPARC) v8

Byte 5 (SPARC) v9

Byte 2 (x86)

8- 15 Byte 2 (SPARC) v8

Byte 6 (SPARC) v9

Byte 1 (x86)

0- 7 Byte 3 (SPARC) v8

Byte 7 (SPARC) v9

Byte 0 (x86)

Note – long long is not available in -Xc mode.

F.2 Data Representations

Appendix F • ISO C Data Representations 369

TABLE F–5 Representation of long long

Bits Content

56- 63 Byte 0 (SPARC)

Byte 7 (x86)

48- 55 Byte 1 (SPARC)

Byte 6 (x86)

40- 47 Byte 2 (SPARC)

Byte 5 (x86)

32- 39 Byte 3 (SPARC)

Byte 4 (x86)

24- 31 Byte 4 (SPARC)

Byte 3 (x86)

16- 23 Byte 5 (SPARC)

Byte 2 (x86)

8- 15 Byte 6 (SPARC)

Byte 1 (x86)

0- 7 Byte 7 (SPARC)

Byte 0 (x86)

F.2.2 Floating-Point Representations
float, double, and long double data elements are represented according to the ISO IEEE
754-1985 standard. The representation is:

(-1)s(e- bias)¥2 j.f

where:

■ s = sign

■ e = biased exponent
■ j is the leading bit, determined by the value of e. In the case of long double (x86), the leading

bit is explicit; in all other cases, it is implicit.
■ f = fraction
■ u means that the bit can be either 0 or 1.

The following tables show the position of the bits.

F.2 Data Representations

Sun Studio 12: C User's Guide •370

TABLE F–6 floatRepresentation

Bits Name

31 Sign

23- 30 Exponent

0- 22 Fraction

TABLE F–7 doubleRepresentation

Bits Name

63 Sign

52- 62 Exponent

0- 51 Fraction

TABLE F–8 long doubleRepresentation (SPARC)

Bits Name

127 Sign

112- 126 Exponent

0- 111 Fraction

TABLE F–9 long doubleRepresentation (x86)

Bits Name

80- 95 Unused

79 Sign

64- 78 Exponent

63 Leading bit

0- 62 Fraction

For further information, refer to the Numerical Computation Guide.

F.2 Data Representations

Appendix F • ISO C Data Representations 371

F.2.3 Exceptional Values
float and double numbers are said to contain a “hidden,” or implied, bit, providing for one
more bit of precision than would otherwise be the case. In the case of long double, the leading
bit is implicit (SPARC) or explicit (x86); this bit is 1 for normal numbers, and 0 for subnormal
numbers.

TABLE F–10 floatRepresentations

normal number (0<e<255): (-1)Sign2 (exponent- 127)1.f

subnormal number

(e=0, f!=0):

(-1)Sign2 (-126)0.f

zero (e=0, f=0): (-1)Sign0.0

signaling NaN s=u, e=255(max); f=.0uuu-uu; at least one bit must be nonzero

quiet NaN s=u, e=255(max); f=.1uuu-uu

Infinity s=u, e=255(max); f=.0000-00 (all zeroes)

TABLE F–11 doubleRepresentations

normal number (0<e<2047): (-1)Sign2 (exponent- 1023)1.f

subnormal number (e=0, f!=0): (-1)Sign2 (-1022)0.f

zero (e=0, f=0): (-1)Sign0.0

signaling NaN s=u, e=2047(max); f=.0uuu-uu; at least one bit must be nonzero

quiet NaN s=u, e=2047(max); f=.1uuu-uu

Infinity s=u, e=2047(max); f=.0000-00 (all zeroes)

TABLE F–12 long doubleRepresentations

normal number (0<e<32767): (-1)Sign2 (exponent- 16383)1.f

subnormal number (e=0, f!=0): (-1)Sign2 (-16382)0.f

zero (e=0, f=0): (-1)Sign0.0

signaling NaN s=u, e=32767(max); f=.0uuu-uu; at least one bit must be nonzero

quiet NaN s=u, e=32767(max); f=.1uuu-uu

Infinity s=u, e=32767(max); f=.0000-00 (all zeroes)

F.2 Data Representations

Sun Studio 12: C User's Guide •372

F.2.4 Hexadecimal Representation of Selected Numbers
The following tables show the hexadecimal representations.

TABLE F–13 Hexadecimal Representation of Selected Numbers (SPARC)

Value float double long double

+0

-0

00000000

80000000

0000000000000000

8000000000000000

00000000000000000000000000000000

80000000000000000000000000000000

+1.0

-1.0

3F800000

BF800000

3FF0000000000000

BFF0000000000000

3FFF00000000000000000000000000000

BFFF00000000000000000000000000000

+2.0

+3.0

40000000

40400000

4000000000000000

4008000000000000

40000000000000000000000000000000

40080000000000000000000000000000

+Infinity

-Infinity

7F800000

FF800000

7FF0000000000000

FFF0000000000000

7FFF00000000000000000000000000000

FFFF00000000000000000000000000000

NaN 7FBFFFFF 7FF7FFFFFFFFFFFF 7FFF7FFFFFFFFFFFFFFFFFFFFFFFFFFF

TABLE F–14 Hexadecimal Representation of Selected Numbers (x86)

Value float double long double

+0

-0

00000000

80000000

0000000000000000

0000000080000000

00000000000000000000

80000000000000000000

+1.0

-1.0

3F800000

BF800000

000000003FF00000

00000000BFF00000

3FFF8000000000000000

BFFF8000000000000000

+2.0

+3.0

40000000

40400000

0000000040000000

0000000040080000

40008000000000000000

4000C000000000000000

+Infinity

-Infinity

7F800000

FF800000

000000007FF00000

00000000FFF00000

7FFF8000000000000000

FFFF8000000000000000

NaN 7FBFFFFF FFFFFFFF7FF7FFFF 7FFFBFFFFFFFFFFFFFFF

For further information, refer to the Numerical Computation Guide.

F.2.5 Pointer Representation
A pointer in C occupies four bytes. A pointer in C occupies eight bytes on SPARC v9
architectures. The NULL value pointer is equal to zero.

F.2 Data Representations

Appendix F • ISO C Data Representations 373

F.2.6 Array Storage
Arrays are stored with their elements in a specific storage order. The elements are actually
stored in a linear sequence of storage elements.

C arrays are stored in row-major order; the last subscript in a multidimensional array varies the
fastest.

String data types are simply arrays of char elements. The maximum number of characters
allowed in a string literal or wide string literal (after concatenation) is 4,294,967,295.

See “F.1 Storage Allocation” on page 367 for information on the size limit of storage allocated on
the stack.

TABLE F–15 Array Types and Storage

Type
Maximum Number of Elements for SPARC and
x86 Maximum Number of Elements for SPARC V9

char 4,294,967,295 2,305,843,009,213,693,951

short 2,147,483,647 1,152,921,504,606,846,975

int 1,073,741,823 576,460,752,303,423,487

long 1,073,741,823 288,230,376,151,711,743

float 1,073,741,823 576,460,752,303,423,487

double 536,870,911 288,230,376,151,711,743

long double 268,435,451 144,115,188,075,855,871

long long
1 536,870,911 288,230,376,151,711,743

1 Not valid in -Xc mode with -xc99=none.

Static and global arrays can accommodate many more elements.

F.2.7 Arithmetic Operations on Exceptional Values
This section describes the results derived from applying the basic arithmetic operations to
combinations of exceptional and ordinary floating-point values. The information that follows
assumes that no traps or any other exception actions are taken.

The following table explains the abbreviations:

F.2 Data Representations

Sun Studio 12: C User's Guide •374

TABLE F–16 Abbreviation Usage

Abbreviation Meaning

Num Subnormal or normal number

Inf Infinity (positive or negative)

NaN Not a number

Uno Unordered

The following tables describe the types of values that result from arithmetic operations
performed with combinations of different types of operands.

TABLE F–17 Addition and Subtraction Results

Right Operand: 0 Right Operand: Num Right Operand: Inf Right Operand: NaN

Left Operand: 0 0 Num Inf NaN

Left Operand: Num Num See1 Inf NaN

Left Operand: Inf Inf Inf See1 NaN

Left Operand: NaN NaN NaN NaN NaN
1 Num + Num could be Inf, rather than Num, when the result is too large (overflow). Inf + Inf = NaN when the infinities are of opposite
sign.

TABLE F–18 Multiplication Results

Right Operand:0 Right Operand:Num Right Operand:Inf Right Operand:NaN

Left Operand:0 0 0 NaN NaN

Left Operand: Num 0 Num Inf NaN

Left Operand: Inf NaN Inf Inf NaN

Left Operand: NaN NaN NaN NaN NaN

TABLE F–19 Division Results

Right Operand:0 Right Operand:Num Right Operand:Inf Right Operand:NaN

Left Operand:0 NaN 0 0 NaN

Left Operand: Num Inf Num 0 NaN

Left Operand: Inf Inf Inf NaN NaN

Left Operand: NaN NaN NaN NaN NaN

F.2 Data Representations

Appendix F • ISO C Data Representations 375

TABLE F–20 Comparison Results

Right Operand:0 Right Operand:+Num Right Operand:+Inf Right Operand:+NaN

Left Operand:0 = < < Uno

Left Operand:
+Num

> The result of the
comparison

< Uno

Left Operand: +Inf > > = Uno

Left Operand: +NaN Uno Uno Uno Uno

Note – NaN compared with NaN is unordered, and results in inequality. +0 compares equal to-
0.

F.3 Argument-Passing Mechanism
This section describes how arguments are passed in ISO C.

■ All arguments to C functions are passed by value.
■ Actual arguments are passed in the reverse order from which they are declared in a function

declaration.
■ Actual arguments which are expressions are evaluated before the function reference. The

result of the expression is then placed in a register or pushed onto the stack.

F.3.1 32-Bit SPARC
Functions return integer results in register %o0, float results in register %f0, and double

results in registers %f0 and %f1.

long long integers are passed in registers with the higher word order in %oN, and the lower
order word in %o(N+1). In-register results are returned in %o0 and %o1, with similar ordering.

All arguments, except doubles and long doubles, are passed as four-byte values. A double is
passed as an eight-byte value. The first six four-byte values (double counts as 8) are passed in
registers %o0 through %o5. The rest are passed onto the stack. Structures are passed by making a
copy of the structure and passing a pointer to the copy. A long double is passed in the same
manner as a structure.

Registers described are as seen by the caller.

F.3 Argument-Passing Mechanism

Sun Studio 12: C User's Guide •376

F.3.1.1 64-Bit SPARC
All integral arguments are passed as eight-byte values.

Floating-point arguments are passed in floating-point registers when possible.

(x86)

Functions return results in the following registers:

TABLE F–21 Registers Used by x86 Functions to Return Types

Register Type Returned

int %eax

long long %edx and %eax

float, double, and long

double

%st(0)

float _Complex %eax for the real part and %edx for the imaginary part

double _Complex and
long double _Complex

The same as a struct that contains two elements of the corresponding floating
point type.

All arguments except structs, unions, long longs, doubles and long doubles are passed as
four-byte values; a long long is passed as an eight-byte value, a double is passed as an eight-byte
value, and a long double is passed as a 12-byte value.

structs and unions are copied onto the stack. The size is rounded up to a multiple of four
bytes. Functions returning structs and unions are passed a hidden first argument, pointing to
the location into which the returned struct or union is stored.

Upon return from a function, it is the responsibility of the caller to pop arguments from the
stack, except for the extra argument for struct and union returns that is popped by the called
function.

F.3 Argument-Passing Mechanism

Appendix F • ISO C Data Representations 377

378

Performance Tuning (SPARC)

This appendix describes performance tuning on SPARC platforms.

G.1 Limits
Some parts of the C library cannot be optimized for speed, even though doing so would benefit
most applications. Some examples:

■ Integer arithmetic routines—Current SPARC V8 processors support integer multiplication
and division instructions. However, if standard C library routines were to use these
instructions, programs running on V7 SPARC processors would either run slowly due to
kernel emulation overhead, or might break altogether. Hence, integer multiplication and
division instructions cannot be used in the standard C library routines.

■ Doubleword memory access—Block copy and move routines, such as memmove() and
bcopy(), could run considerably faster if they used SPARC doubleword load and store
instructions (ldd and std). Some memory-mapped devices, such as frame buffers, do not
support 64-bit access; nevertheless, these devices are expected to work correctly with
memmove() and bcopy(). Hence, ldd and std cannot be used in the standard C library
routines.

■ Memory allocation algorithms—The C library routines malloc() and free() are typically
implemented as a compromise between speed, space, and insensitivity to coding errors in
old UNIX programs. Memory allocators based on “buddy system” algorithms typically run
faster than the standard library version, but tend to use more space.

GA P P E N D I X G

379

G.2 libfast.a Library
The library libfast.a provides speed-tuned versions of standard C library functions. Because
it is an optional library, it can use algorithms and data representations that may not be
appropriate for the standard C library, even though they improve the performance of most
applications.

Use profiling to determine whether the routines in the following checklist are important to the
performance of your application, then use this checklist to decide whether libfast.a benefits
the performance:

■ Do use libfast.a if performance of integer multiplication or division is important, even if a
single binary version of the application must run on both V7 and V8 SPARC platforms. The
important routines are: .mul, .div, .rem, .umul, .udiv, and .urem.

■ Do use libfast.a if performance of memory allocation is important, and the size of the
most commonly allocated blocks is close to a power of two. The important routines are:
malloc(), free(), realloc().

■ Do use libfast.a if performance of block move or fill routines is important. The important
routines are: bcopy(), bzero(), memcpy(), memmove(), and memset().

■ Do not use libfast.a if the application requires user mode, memory-mapped access to an
I/O device that does not support 64-bit memory operations.

■ Do not use libfast.a if the application is multithreaded.

When linking the application, add the option -lfast to the cc command used at link time. The
cc command links the routines in libfast.a ahead of their counterparts in the standard C
library.

G.2 libfast.a Library

Sun Studio 12: C User's Guide •380

The Differences Between K&R Sun C and Sun
ISO C

This appendix describes the differences between the previous K&R Sun C and Sun ISO C.

For more information see “1.2 Standards Conformance” on page 27.

H.1 K&R Sun C Incompatibilities With Sun ISO C
TABLE H–1 K&R Sun C Incompatibilities With Sun ISO C

Topic Sun C (K&R) Sun ISO C

envp argument to
main()

Allows envp as third argument to main(). Allows this third argument; however,
this usage is not strictly conforming to
the ISO C standard.

Keywords Treats the identifiers const, volatile, and
signed as ordinary identifiers.

const, volatile, and signed are
keywords.

extern and static

functions declarations
inside a block

Promotes these function declarations to file
scope.

The ISO standard does not guarantee
that block scope function declarations
are promoted to file scope.

Identifiers Allows dollar signs ($) in identifiers. $ not allowed.

long float types Accepts long float declarations and treats
these as double(s).

Does not accept these declarations.

Multi-character
character-constants

int mc = ’abcd’;

yields:

abcd

int mc = ’abcd’;

yields:

dcba

Integer constants Accepts 8 or 9 in octal escape sequences. Does not accept 8 or 9 in octal escape
sequences.

HA P P E N D I X H

381

TABLE H–1 K&R Sun C Incompatibilities With Sun ISO C (Continued)
Topic Sun C (K&R) Sun ISO C

Assignment operators Treats the following operator pairs as two
tokens, and as a consequence, permits
white space between them:

*=, /=, %=, +=, -=, <<=, >>=, &=, ^=,

|=

Treats them as single tokens, and
therefore disallows white space in
between.

Unsigned preserving
semantics for
expressions

Supports unsigned preserving, that is,
unsigned char/shorts are converted into
unsigned int(s).

Supports value-preserving, that is,
unsigned char/short(s) are converted
into int(s).

Single/double
precision calculations

Promotes the operands of floating point
expressions to double.

Functions which are declared to return
floats always promote their return values
to doubles.

Allows operations on floats to be
performed in single precision
calculations.

Allows float return types for these
functions.

Name spaces of
struct/union

members

Allows struct, union, and arithmetic types
using member selection operators (’.’,
’->’) to work on members of other
struct(s) or unions.

Requires that every unique
struct/union have its own unique
name space.

A cast as an lvalue Supports casts as lvalue(s). For example:

(char *)ip = &char;

Does not support this feature.

Implied int

declarations
Supports declarations without an explicit
type specifier. A declaration such as num; is
treated as implied int. For example:

num; /*num implied as an int*/

int num2; /* num2 explicitly*/

/* declared an int */

The num; declaration (without the
explicit type specifier int) is not
supported, and generates a syntax error.

Empty declarations Allows empty declarations, such as:

int;

Except for tags, disallows empty
declarations.

Type specifiers on type
definitions

Allows type specifiers such as unsigned,
short, long on typedefs declarations. For
example:

typedef short small;

unsigned small x;

Does not allow type specifiers to modify
typedef declarations.

H.1 K&R Sun C Incompatibilities With Sun ISO C

Sun Studio 12: C User's Guide •382

TABLE H–1 K&R Sun C Incompatibilities With Sun ISO C (Continued)
Topic Sun C (K&R) Sun ISO C

Types allowed on bit
fields

Allows bit fields of all integral types,
including unnamed bit fields.

The ABI requires support of unnamed bit
fields and the other integral types.

Supports bit-fields only of the type int,
unsigned int and signed int. Other
types are undefined.

Treatment of tags in
incomplete
declarations

Ignores the incomplete type declaration. In
the following example, f1 refers to the
outer struct:

struct x { . . . } s1;

{struct x; struct y {struct x f1; }

s2; struct x

{ . . . };}

In an ISO-conforming implementation,
an incomplete struct or union type
specifier hides an enclosing declaration
with the same tag.

Mismatch on
struct/union/enum

declarations

Allows a mismatch on the
struct/enum/union type of a tag in nested
struct/union declarations. In the
following example, the second declaration
is treated as a struct:

struct x {. . . }s1;

{union x s2;. . .}

Treats the inner declaration as a new
declaration, hiding the outer tag.

Labels in expressions Treats labels as (void *) lvalues. Does not allow labels in expressions.

switch condition type Allows float(s) and double(s) by
converting them to int(s).

Evaluates only integral types (int,
char, and enumerated) for the switch
condition type.

Syntax of conditional
inclusion directives

The preprocessor ignores trailing tokens
after an #else or #endif directive.

Disallows such constructs.

Token-pasting and the
preprocessor
operator

Does not recognize the ## operator.
Token-pasting is accomplished by placing a
comment between the two tokens being
pasted:

#define PASTE(A,B) A/*any comment*/B

Defines ## as the preprocessor operator
that performs token-pasting, as shown
in this example:

#define PASTE(A,B) A##B

Furthermore, the Sun ISO C
preprocessor doesn’t recognize the Sun
C method. Instead, it treats the
comment between the two tokens as
white space.

H.1 K&R Sun C Incompatibilities With Sun ISO C

Appendix H • The Differences Between K&R Sun C and Sun ISO C 383

TABLE H–1 K&R Sun C Incompatibilities With Sun ISO C (Continued)
Topic Sun C (K&R) Sun ISO C

Preprocessor
rescanning

The preprocessor recursively substitutes:

#define F(X) X(arg)

F(F)

yields

arg(arg)

A macro is not replaced if it is found in
the replacement list during the rescan:

#define F(X)X(arg)F(F)

yields:

F(arg)

typedef names in
formal parameter lists

You can use typedef names as formal
parameter names in a function declaration.
“Hides” the typedef declaration.

Disallows the use of an identifier
declared as a typedef name as a formal
parameter.

Implementation-specific
initializations of
aggregates

Uses a bottom-up algorithm when parsing
and processing partially elided initializers
within braces:

struct{ int a[3]; int b; }\

w[]={{1},2};

yields

sizeof(w)=16

w[0].a=1,0,0

w[0].b=2

Uses a top-down parsing algorithm. For
example:

struct{int a[3];int b;}\

w[]={{1},2};

yields

sizeof(w)=32w[0].a=1,0,0w[0].

=0w[1].a=2,0,0w[1].b=0

Comments spanning
include files

Allows comments which start in an
#include file to be terminated by the file
that includes the first file.

Comments are replaced by a
white-space character in the translation
phase of the compilation, which occurs
before the #include directive is
processed.

Formal parameter
substitution within a
character constant

Substitutes characters within a character
constant when it matches the replacement
list macro:

#define charize(c)’c’

charize(Z)

yields:

’Z’

The character is not replaced:

#define charize(c) ’c’charize(Z)

yields:

’c’

H.1 K&R Sun C Incompatibilities With Sun ISO C

Sun Studio 12: C User's Guide •384

TABLE H–1 K&R Sun C Incompatibilities With Sun ISO C (Continued)
Topic Sun C (K&R) Sun ISO C

Formal parameter
substitution within a
string constant

The preprocessor substitutes a formal
parameter when enclosed within a string
constant:

#define stringize(str) ’str’

stringize(foo)

yields:

”foo”

The # preprocessor operator should be
used:

#define stringize(str) ’str’

stringize(foo)

yields:

”str”

Preprocessor built into
the compiler
“front-end”

Compiler invokes cpp(1) followed by all the
other components of the compilation
system depending on the options specified.

The ISO C translation phases 1-4, which
cover the processing of preprocessor
directives, is built directly into acomp,
so cpp is not directly invoked during
compilation, except in -Xs mode.

Line concatenation
with backslash

Does not recognize the backslash character
in this context.

Requires that a newline character
immediately preceded by a backslash
character be spliced together.

Trigraphs in string
literals

Does not support this ISO C feature.

asm keyword asm is a keyword. asm is treated as an ordinary identifier.

Linkage of identifiers Does not treat uninitialized static

declarations as tentative declarations. As a
consequence, the second declaration will
generate a ’redeclaration’ error, as in:

static int i = 1;

static int i;

Treats uninitialized static declarations
as tentative declarations.

Name spaces Distinguishes only three:
struct/union/enum tags, members of
struct/union/enum, and everything else.

Recognizes four distinct name spaces:
label names, tags (the names that follow
the keywords struct, union or enum),
members of struct/union/enum, and
ordinary identifiers.

long double type Not supported. Allows long double type declaration.

Floating point
constants

The floating point suffixes, f, l, F, and L, are
not supported.

Unsuffixed integer
constants can have
different types

The integer constant suffixes u and U are
not supported.

H.1 K&R Sun C Incompatibilities With Sun ISO C

Appendix H • The Differences Between K&R Sun C and Sun ISO C 385

TABLE H–1 K&R Sun C Incompatibilities With Sun ISO C (Continued)
Topic Sun C (K&R) Sun ISO C

Wide character
constants

Does not accept the ISO C syntax for wide
character constants, as in:

wchar_t wc = L’x’;

Supports this syntax.

’\a’ and ’\x’ Treats them as the characters ’a’ and ’x’. Treats ’\a’ and ’\x’ as special escape
sequences.

Concatenation of
string literals

Does not support the ISO C concatenation
of adjacent string literals.

Wide character string
literal syntax

Does not support the ISO C wide character,
string literal syntax shown in this example:

wchar_t *ws = L"hello";

Supports this syntax.

Pointers: void *

versus char *

Supports the ISO C void * feature.

Unary plus operator Does not support this ISO C feature.

Function prototypes—
ellipses

Not supported. ISO C defines the use of ellipses "..." to
denote a variable argument parameter
list.

Type definitions Disallows typedefs to be redeclared in an
inner block by another declaration with the
same type name.

Allows typedefs to be redeclared in an
inner block by another declaration with
the same type name.

Initialization of
extern variables

Does not support the initialization of
variables explicitly declared as extern.

Treats the initialization of variables
explicitly declared as extern, as
definitions.

Initialization of
aggregates

Does not support the ISO C initialization of
unions or automatic structures.

Prototypes Does not support this ISO C feature.

Syntax of
preprocessing
directive

Recognizes only those directives with a # in
the first column.

ISO C allows leading white-space
characters before a # directive.

The # preprocessor
operator

Does not support the ISO C # preprocessor
operator.

#error directive Does not support this ISO C feature.

H.1 K&R Sun C Incompatibilities With Sun ISO C

Sun Studio 12: C User's Guide •386

TABLE H–1 K&R Sun C Incompatibilities With Sun ISO C (Continued)
Topic Sun C (K&R) Sun ISO C

Preprocessor
directives

Supports two pragmas,
unknown_control_flow and
makes_regs_inconsistent along with the
#ident directive. The preprocessor issues
warnings when it finds unrecognized
pragmas.

Does not specify its behavior for
unrecognized pragmas.

Predefined macro
names

These ISO C-defined macro names are not
defined:

__STDC__

__DATE__

__TIME__

__LINE__

H.2 Keywords
The following tables list the keywords for the ISO C Standard, the Sun ISO C compiler, and the
Sun C compiler.

The first table lists the keywords defined by the ISO C standard.

TABLE H–2 ISO C Standard Keywords

_Bool
1

_Complex
1

_Imaginary
1

auto

break case char const

continue default do double

else enum extern float

for goto if inline
1

int long register restrict

return short signed sizeof

static struct switch typedef

union unsigned void volatile

while

The C compiler also defines one additional keyword, asm. However, asm is not supported in
-Xc mode.

H.2 Keywords

Appendix H • The Differences Between K&R Sun C and Sun ISO C 387

Keywords in Sun C are listed below.

TABLE H–3 Sun C (K&R) Keywords

asm auto break case

char continue default do

double else enum extern

float for fortran goto

if int long register

return short sizeof static

struct switch typedef union

unsigned void while

H.2 Keywords

Sun Studio 12: C User's Guide •388

Index

Numbers and Symbols
-#, 92, 218
_’, 109
__’, 109
-###, 92, 218
// comment indicators

in C99, 340
with -xCC, 252

_ _asm keyword, 54
#assert, 40
#assert, 40, 219
#define, 220
#include, adding header files with, 56
#pragma, 41, 52, 120, 122
#pragma alias, 121
#pragma alias_level, 120
#pragma align, 41
#pragma c99, 41
#pragma does_not_read_global_data, 42
#pragma does_not_return, 42
#pragma does_not_write_global_data, 42-43
#pragma error_messages, 43
#pragma fini, 43
#pragma hdrstop, 44
#pragma ident, 44
#pragma init, 44-45
#pragma inline, 45
#pragma int_to_unsigned, 45
#pragma may_not_point_to, 122
#pragma may_piont_to, 121
#pragma MP serial_loop, 45-46, 81
#pragma MP serial_loop-nested, 46, 82

#pragma MP taskloop, 46, 82
#pragma no_inline, 45
#pragma no_side_effect, 47
#pragma noalias, 121, 122
#pragma nomemorydepend, 46-47
#pragma opt, 47
#pragma pack, 48
#pragma pipeloop, 48-49
#pragma rarely_called, 49
#pragma redefine_extname, 49-50
#pragma returns_new_memory, 50
#pragma unknown_control_flow, 51
#pragma unroll, 51
#pragma warn_missing_parameter_info, 51
#pragma weak, 52
_ _STDC_ _ value under -Xc, 240

A
-A, 219
-a, 92
abort function, 330
accessible documentation, 22-23
acomp (C compiler), 31
alias disambiguation, 119, 133
alignment of structures, 355-356
alphabetic list of compiler options, 217, 314
any level alias disambiguation, 241
arithmetic conversions, 39, 40
array

declarators per C99, 344

389

array (Continued)
incomplete array types per C99, 341

ascftime function, 96
assembler, 31
assembly in source, 54
assembly language templates, 312

B
-B, 219
-b, 92
basic level alias disambiguation, 242
basic mode of lint, 89
behavior, implementation-defined, 349-365, 365
binary optimization, 251
binding, static vs. dynamic, 219
bit-field

as impacted by transition to ISO C, 167
portability of constants assigned to, 114
promotion of, 143
treating as signed or unsigned, 356

bits, in execution character set, 351
bitwise operations on signed integers, 353
buffering, 363
__BUILT_IN_VA_ARG_INCR, 53

C
C compiler

changing default dirs searched for libraries, 218
compilation modes and dependencies, 53
compiling a program, 217, 218
components, 30
options passed to linker, 314

C programming tools, 31
-C, 92, 219
-c, 93, 220
C99

// comment indicators, 340
array declarator, 344
flexible array members, 341
FLT_EVAL_METHOD, 338
__func__ support, 340

C99 (Continued)
idempotent qualifiers, 342
implicit function declaration in, 340
inline function specifier, 343
list of keywords, 339
mixed declarations and code, 346
_Pragma, 347
Sun’, 315, 336
type declaration in for loop, 346
type specifier requirement, 341
variable length arrays, 344

cache, as used by optimizer, 252
calloc function, 329
case statements, 357
cc compiler options, 218, 314

-#, 210, 218
-###, 210, 218
-A, 209, 219
-B, 212, 219
-C, 209, 219
-c, 210, 220
-D, 209
-d, 212, 221, 231

interaction with -G, 231
-E, 209, 221
-errfmt, 211, 221
-erroff, 211, 222
-errshort, 211, 222
-errtags, 211, 223
-errwarn, 211, 223
-fast, 203, 205, 224
-fd, 209, 226
-features, 210, 226
-flags, 226
-flteval, 207, 214, 227

interaction with FLT_EVAL_METHOD, 339
-fnonstd, 207
-fns

as part of -fast expansion, 225
grouped by functionality, 207
syntax, 228

-fprecision, 207, 214, 228
interaction with -flteval, 227
interaction with FLT_EVAL_METHOD, 339

Index

Sun Studio 12: C User's Guide •390

cc compiler options (Continued)
-fround, 207, 228

interaction with -xlibmopt, 272
-fsimple

as part of -fast expansion, 225
grouped by functionality, 207
syntax, 229

-fsingle

as part of -fast expansion, 225
grouped by functionality, 207
interaction with FLT_EVAL_METHOD, 339
syntax, 230

-fstore, 207, 214, 230
-ftrap

grouped by functionality, 207
syntax, 230

-G, 213, 231
-g, 212, 232
-H, 209, 232
-h, 213, 233
-I, 209, 233
-i, 213, 233
-keeptmp, 210, 234
-KPIC, 233
-Kpic, 234
-L, 213, 234
-l, 213, 234
-mc, 213, 235
-mr, 213, 235
-mt, 205, 208
-native, 236
-nofstore

as part of -fast expansion, 225
grouped by functionality, 207, 214
interaction with -flteval, 227
syntax, 236

-O, 236
-o, 210, 236
-P, 209, 237
-p, 203, 205
-Q, 213, 237
-qp, 237
-R, 213, 237
-S, 210, 237

cc compiler options (Continued)
-s, 212, 237
-U, 209, 238
-V, 210, 238
-v, 211, 238
-W, 210, 239
-w, 212, 240
-X, 209, 210, 240

interaction with FLT_EVAL_METHOD, 339
-xalias_level

as part of -fast expansion, 225
examples, 124, 133
explanation, 119
grouped by functionality, 203
syntax, 241

-xarch

grouped by functionality, 205, 213
interaction with -flteval, 227
interaction with FLT_EVAL_METHOD, 339
syntax, 243

-xautopar, 205, 208, 250
-xbinopt

grouped by functionality, 204
syntax, 251

-xbuiltin

as part of -fast expansion, 225
grouped by functionality, 204
syntax, 251

-xc99

grouped by functionality, 209, 211
in math conversions, 40
syntax, 252

-xcache, 213
-xCC, 209, 252
-xchar, 209, 211, 254
-xchar_byte_order, 206, 255
-xcheck, 208, 212, 256
-xchip, 213, 256
-xcode, 213, 258
-xcrossfile, 204, 260
-xcsi, 209, 261
-xdebugformat, 212, 261
-xdepend

as part of -fast expansion, 225

Index

391

cc compiler options, -xdepend (Continued)
grouped by functionality, 204, 206, 207
syntax, 261

-xdryrun, 262
-xe, 212, 262
-xexplicitpar, 206, 208, 262
-xF, 204, 263
-xhelp, 211, 264
-xhwcprof, 204, 206, 265
-xinline, 204, 265
-xipo, 204, 206, 267
-xipo_archive, 204, 269
-xjobs, 204, 211, 270
-xldscope, 35, 213, 271
-xlibmieee, 207, 272
-xlibmil

as part of -fast expansion, 225
grouped by functionality, 204
syntax, 272

-xlibmopt, 204, 272
as part of -fast expansion, 225

-xlic_lib, 204
-xlicinfo, 214
-xlinkopt, 204, 206, 273

interaction with -G, 273
-xloopinfo, 208, 274
-xM, 209, 275
-xM1, 209, 275
-xmaxopt, 204, 276

interaction with -xO, 276
-xMD, 209, 276
-xmemalign

as part of -fast expansion, 225
grouped by functionality, 206
syntax, 277

-xMerge, 213, 276
-xMF, 209, 276
-xMMD, 209, 276
-xmodel, 214, 278
-xnolib, 213, 279
-xnolibmil, 204, 213, 279
-xnolibmopt, 204, 279

interaction with -xlibmopt, 273

cc compiler options (Continued)
-xO

grouped by functionality, 204
interaction with -xmaxopt, 280
syntax, 279

-xopenmp, 206, 207, 208, 282
-xP, 209, 284
-xpagesize, 204, 206, 212, 284
-xpagesize_heap, 204, 206, 212, 285
-xpagesize_stack, 204, 206, 212, 285
-xparallel, 206, 208, 286
-xpch, 204, 211, 287
-xpchstop, 205, 211, 291
-xpentium, 205, 214, 292
-xpg, 206, 209, 292
-xprefetch

grouped by functionality, 205
syntax, 293

-xprefetch_auto_type, 205, 294
-xprefetch_level, 205, 294
-xprofile, 205, 206, 295
-xprofile_ircache, 205, 298
-xprofile_pathmap, 205, 298
-xreduction, 208, 299
-xregs, 214, 299
-xrestrict, 205, 301
-xs, 212, 301
-xsafe, 205, 301
-xsb, 206, 210, 302
-xsbfast, 210, 302
-xsfpconst, 207, 302
-xspace, 205, 303
-xstrconst, 213, 303
-xtarget

grouped by functionality, 214
syntax, 303

-xtemp, 211, 308
-xtime, 211, 309
-xtransition, 212, 309

warning for trigraphs, 146
-xtrigraphs, 210, 310
-xunroll, 205, 311
-xustr, 210, 311
-xvector, 206, 208, 312

Index

Sun Studio 12: C User's Guide •392

cc compiler options (Continued)
-xvis, 212, 312
-xvpara, 208, 212, 313
-Y, 211, 313
-YA, 211, 314
-YI, 211, 314
-YP, 211, 218, 314
-YS, 211, 314
-Zll, 208, 314

cftime function, 96
cg (code generator), 31
char

signedness of, 254
storage allocation for, 367

character
bits in set, 351
decimal point, 364
mapping set, 350-351
multibyte, shift status, 350
set, collation sequence, 365
single-character character-constant, 357-358
source and execution of set, 350-351
space, 362
testing of sets, 359

clock function, 330, 364
code generator, 31
code optimization

by using -fast, 224
optimizer, 31
with -xO, 279

comments
preventing removal by preprocessor, 219
using // by issuing -xCC, 252
using // in C99, 340

compatibility options, 217, 240
compiler commentary in object file, reading with

er_src utility, 251
compiler options grouped by function, 203, 214
computed goto, 37
consistency checks by lint, 113
const, 149, 151, 166
constants

promotion of integral, 144
specific to Sun ISO C, 33, 34

conversions, 39, 40
integers, 352-353

cpp (C preprocessor), 31
creat function, 96
cscope, 185, 201

See also Source Browser
command-line use, 187, 194, 196
editing source files, 186, 193, 194, 201
environment setup, 186, 187, 201
environment variables, 196, 197
searching source files, 185, 186, 187, 193
usage examples, 186, 194, 197, 200

D
.d filename extension, 276
-d, 221
data reordering, 263
data types

long long, 39
unsigned long long, 39

__DATE__, 325, 358
date and time formats, 365
dbx tool

disable Auto-Read for, 301
symbol table information for, 232

debugger data format, 261
debugging information, removing, 237
decimal-point character, 364
declaration specifiers

__global, 35
__hidden, 35
__symbolic, 35
__thread, 35

declarators, 357
default

compiler behavior, 240
handling and SIGILL, 362
locale, 351

default dirs searched for libraries, 218
diagnostics, format, 349
-dirout, 93
documentation, accessing, 21-23, 23
documentation index, 21

Index

393

domain errors, math functions, 359-360
double, storage allocation for, 368
dwarf debugger-data format, 261
dynamic linking, 221

E
-E, 221
edit, source files, See cscope
EDITOR, 186, 201
elfdump, 260
ellipsis notation, 137, 139, 167
enhanced mode of lint, 89
environment variable

EDITOR as used by cscope, 186, 201
LANG

in C90, 351
in C99, 320, 335

LC_ALL

in C90, 351
in C99, 320

LC_CTYPE

in C90, 351
in C99, 320

OMP_DYNAMIC, 54
OMP_NESTED, 54
OMP_NUM_THREADS, 55
OMP_SCHEDULE, 55
PARALLEL, 55
PARALLEL example, 62
STACKSIZE, 64
SUN_PROFDATA, 55, 295
SUN_PROFDATA_DIR, 55, 295
SUNPRO_MP_THR_IDLE, 55
SUNPRO_SB_INIT_FILE_NAME, 55
SUNW_MP_THR_IDLE, 63
SUNW_MP_WARN, 63
TCOVDIR, 297
TERM as used by cscope, 186
TMPDIR, 56
TZ, 364
VPATH as used by cscope, 187

er_src utility, 251
ERANGE, 360

ERANGE macro, 326
-err, 93
-errchk, 93
-errfmt, 94, 221
-errhdr, 94
errno

C98 implementation of, 360
header file, 156, 157
impact of -fast on, 224, 225
impact of -xbuiltin on, 251
impact of -xlibmieee on, 272
impact of -xlibmil on, 272
impact of -xlibmopt on, 272
impact of finalization functions on, 43
impact of initialization functions on, 45
preserving value of, 54
setting value to ERANGE on underflow, 326, 329

-erroff, 95, 222
error messages, 349

adding prefix "error\
" to, 221

controlling length for a type mismatch, 222
suppressing in lint, 95

-errsecurity, 96
-errshort, 222
-errtags, 97, 223
-errwarn, 97, 223
exec function, 97
_Exit function, 329
expressions, grouping and evaluation in, 160, 162

F
-F, 98
-fast, 224
fbe (assembler), 31
fclose function, 329
-fd, 98, 226
-features, 226
fegetexceptflag function, 325
feraiseexcept function, 326
fgetc function, 97
fgetpos function, 329
filename, .profile extension for, 295

Index

Sun Studio 12: C User's Guide •394

files, temporary, 56
filters for lint, 118
-flags, 226
-flagsrc, 98
float, storage allocation for, 368
float expressions as single precision, 230
float.h

in C90, 338
macros defined in, 331

floating point, 353-354
gradual underflows, 36
nonstop, 36
representations, 353-354
truncation, 354
values, 353-354

FLT_EVAL_METHOD

evaluation format in C99, 338
impact on accuracy of library functions, 321
impact on float_t and double_t, 326
non-standard negative values of, 321

-flteval, 227
fmod function, 327
-fns, 228
fopen function, 96
for loop that contains a type declaration, 346
-fprecision, 228
fprintf function, 328, 364
free function, 329
-fround, 228
fscanf function, 328, 364
fsetpos function, 329
-fsimple, 229
-fsingle, 230
-fstore, 230
ftell function, 329
-ftrap, 230
__func__, 340
function

abort, 330
ascftime, 96
calloc, 329
cftime, 96
clock, 330, 364
creat, 96

function (Continued)
declaration specifier, 35
exec, 97
_Exit, 329
fclose, 329
fegetexceptflag, 325
feraiseexcept, 326
fgetc, 97
fgetpos, 329
fmod, 327, 360
fopen, 96
fprintf, 328, 364
free, 329
fscanf, 328, 364
fsetpos, 329
ftell, 329
fwprintf, 328
fwscanf, 328
getc, 97
getenv, 318
gets, 96
getutxent, 181
ilogb, 326
ilogbf, 326
ilogbl, 326
implicit declaration of, 340
isalnum, 359
isalpha, 335, 359
isatty, 316
iscntrl, 359
islower, 359
isprint, 359
isupper, 359
iswalpha, 335
iswctype, 336
main, 316
malloc, 329
printf, 329
prototypes, 113, 136, 139
prototypes, lint checks for, 117
realloc, 329
remove, 328, 363
rename, 328, 363
reordering, 263

Index

395

function (Continued)
scanf, 96
setlocale, 326
signal, 316
sizeof, 179
stat, 97
strerror, 335
strftime, 330
strlcpy, 96
strtod, 329
strtof, 329
strtold, 329
sunw_mp_register, 62
system, 318, 330
towctrans, 336
using varying argument lists, 139, 141
wait, 330
wait3, 330
waitid, 330
waitpid, 330
wcsftime, 330
wcstod, 329
wcstof, 329
wcstold, 329

fwprintf function, 328
fwscanf function, 328

G
-G, 231
-g, 232
getc function, 97
getenv function, 318
gets function, 96
getutxent function, 181
__global, 35
gradual underflows, 36

H
-H, 232
-h, 98, 233
hardware architecture, 243

header files
float.h in C90, 338
format for #include directives, 56
how to include, 56, 57
list of standard headers, 155
standard place, 56, 57
with lint, 91

heap, setting page size for, 284
__hidden, 35

I
-I, 98, 233
-i, 233
__i386, 53
i386 predefined token, 53, 109
idempotent qualifier in C99, 342
ilogb function, 326
ilogbf function, 326
ilogbl function, 326
implementation-defined behavior, 349-365, 365
incomplete types, 163-165, 165
inline expansion templates, 272, 279
inline function specifier for C99, 343
inlining, 272
int, storage allocation for, 367
integers, 352-353, 353
integral constants, promotion of, 144
interactive device, 350
internationalization, 152, 154, 157, 160
interprocedural analysis pass, 267
ipo (C compiler), 31
ir2hf (C compiler), 31
iropt (code optimizer), 31
isalnum function, 359
isalpha function, 335, 359
isatty function, 316
iscntrl function, 359
islower function, 359
ISO C vs. K&, 217, 240
ISO/IEC 9899\

1999 Programming Language C, 27, 337
ISO/IEC 9899-1990 standard, 33
isprint function, 359

Index

Sun Studio 12: C User's Guide •396

isupper function, 359
iswalpha function, 335
iswctype function, 336

J
ja_JP.PCK locale, 261

K
K&, 217, 240
-k, 99
-keeptmp, 234
keywords, 54

list for C99, 339

L
-L, 99, 234
-l, 99, 234
LANG environment variable

in C90, 351
in C99, 320, 335

layout level alias disambiguation, 242
LC_ALL environment variable

in C90, 351
in C99, 320

LC_CTYPE environment variable
in C90, 351
in C99, 320

ld (C compiler), 31
libfast.a, 380
libraries

building shared libraries, 260
default dirs searched by cc, 218
intrinsic name, 233
libfast.a, 380
lint, 116, 118
llib-lx.ln, 116
renaming shared, 233
shared or non shared, 219
specifying dynamic or static links, 219

libraries (Continued)
sun_prefetch.h, 293

library bindings, 219
limit of memory allocation on stack, 367
limits.h, macros defined in, 332
link, static vs. dynamic, 221
link-time optimization, 273
link-time options, list of, 205
linker

options received from compiler, 314
specifying dynamic or static linking in, 221
suppressing linking with, 220

lint
basic mode

introduced, 89
invoking, 90

commands
-#, 92
-###, 92
-a, 92
-b, 92
-C, 92
-c, 93
-dirout, 93
-err=warn, 93
-errchk, 93
-errfmt, 94
-errhdr, 94
-erroff, 95
-errsecurity, 96
-errtags, 97
-errwarn, 97
-F, 98
-fd, 98
-flagsrc, 98
-h, 98
-I, 98
-k, 99
-L, 99
-l, 99
-m, 99
-n, 101
-Ncheck, 100
-Nlevel, 100

Index

397

lint, commands (Continued)
-o, 101
-p, 102
-R, 102
-s, 102
-u, 102
-V, 102
-v, 102
-W, 102
-x, 105
-Xalias_level, 103
-Xc99, 103
-XCC, 103
-Xexplicitpar, 104
-Xkeeptmp, 104
-Xtemp, 104
-Xtime, 104
-Xtransition, 104
-Xustr, 104
-y, 105

consistency checks, 113
diagnostics, 113, 116
directives, 109, 112
enhanced mode

introduced, 89
invoking, 90

filters, 118
header files, finding, 91
how lint examines code, 90
introduction to, 89
libraries, 116, 118
messages

formats of, 106, 108
message ID (tag), identifying, 97, 105
suppressing, 105

portability checks, 114, 115
predefined tokens, 109
predefinition, 40
questionable constructs, 115, 116
recognized cc commands, 92

llib-lx.ln library, 116
local time zone, 364-365
locale, 157, 159-160

behavior, 364-365

locale (Continued)
default, 351
ja_JP.PCK, 261
use of non-conforming, 261

long, storage allocation for, 367
long, storage allocation for, 367
long double

passing in ISO C, 376
storage allocation for, 368

long int, 40
long long, 39-40, 40

arithmetic promotions, 39
passing, 376, 377
representation of, 370
returning, 376
storage allocation for, 367
suffix, 33
value preserving, 34

loops, 261

M
-m, 99
macro expansion, 147
macros

__DATE__, 325, 358
ERANGE, 326
FLT_EVAL_METHOD, 326, 338
NULL, 327
__RESTRICT, 53
those specified infloat.h, 331
those specified inlimits.h, 332
those specified instdint.h, 333
__TIME__, 325, 358

main, semantics of args, 350
main function, 316
makefile dependencies, 275, 276
malloc function, 329
man pages, accessing, 28
math functions, domain errors, 359-360
-mc, 235
mcs (C compiler), 31
memory allocation on the stack, 367
message ID (tag), 222, 223

Index

Sun Studio 12: C User's Guide •398

messages, error, 349
mode, compiler, 240
MP C, 61, 88
-mr, 235
multibyte characters and wide characters, 152-154, 154
multimedia types, handling of, 312
multiprocessing, 61, 88

-xjobs, 270

N
-n, 101
-native, 236
-Ncheck, 100
new features of this release, 25
newline, terminating, 362
-Nlevel, 100
-nofstore, 236
nonstop, floating-point arithmetic, 36
NULL, value of, 359-364
null characters not appended to data, 362
NULL macro, 327

O
-O, 236
-o, 101, 236
object file

linking with ld, 220
producing object file for each source file, 220
reading compiler commentary with er_src

utility, 251
suppressing removal of, 220

obsolete options, list of, 214
OMP_DYNAMIC environment variable, 54
OMP_NESTED environment variable, 54
OMP_NUM_THREADS environment variable, 55
OMP_SCHEDULE environment variable, 55
OpenMP

how to compile for, 62
sunw_mp_register, 62
-xopenmp command, 282

optimization
at link time, 273
-fast and, 224
for SPARC, 379
optimizer, 31
pragma opt and, 47
specify hardware architecture, 243
with -xmaxopt, 276
-xipo and, 267
-xO and, 279

options
compiler options grouped by functionality, 203, 214
compiler options listed alphabetically, 217, 314
lint, 92, 105

P
-P, 237
-p, 102
padding of structures, 355-356
page size, setting for stack or heap, 284
PARALLEL, 62

environment variable, 55
parallelization, 61, 88

See also OpenMP
checking for properly parallelized loops with

-xvpara, 313
creating a program database with -Zll, 314
environment variables for, 62, 64
finding parallelized loops with -xloopinfo, 274
specifying OpenMP pragmas with -xopenmp, 282
turning on reduction recognition with

-xreduction, 299
turning on with -xautopar for multiple

processors, 250
with -xexplicitpar, 262
-xparallel macro, 286

pass, name and version of each, 238
Pentium, 308
performance

optimizing for SPARC, 379
optimizing with -fast, 224
optimizing with-xO, 279

portability, of code, 114, 115

Index

399

portability checks performed by lint, 114, 115
postopt (C compiler), 31
_Pragma, 347
__PRAGMA_REDEFINE_EXTNAME, 53
preassertions for -Aname, 219
precompiled-header file, 287
predefined tokens

__’, 109
__BUILTIN_VA_ARG_INCR, 53, 108
__i386, 53, 108
i386, 53, 109, 220
lint, 109
__RESTRICT, 53, 220
__sparc, 53
sparc, 53, 109, 220
__sparcv9, 108, 220
__sun, 53, 108, 220
sun, 53, 109, 220
__SUNPRO_C, 53, 108
__SVR4, 53, 108, 220
uname, 53
__unix, 53, 108, 220
unix, 53, 109, 220

prefetch, 293
preprocessing, 145, 149

directives, 53, 56, 57, 220, 357-358
how to preserve comments, 219
predefined names, 53
stringizing, 148
token pasting, 148

preserving signedness of chars, 254
printf function, 329
printing, 39, 364
.profile filename extension, 295
programming tools for C, 31
promotion, 142, 145

bit-fields, 143
default arguments, 137
integral constants, 144
value preserving, 142

Q
-Q, 237

-qp, 237
qualifiers, 357

R
R C, 217, 240
R C and ISO C, 217
R C vs. ISO C, 217, 240
-R, 102, 237
readme file, 28
realloc function, 329
remove function, 328, 363
removing symbolic debugging information, 237
rename function, 328, 363
renaming shared libraries, 233
reordering functions and data, 263
representation

floating point, 353-354
integers, 352-353

reserved names, 155, 157
for expansion, 156
for implementation use, 155
guidelines for choosing, 157

_Restrict, 54
__RESTRICT, 53, 220
restrict keyword

as part of supported C99 features, 339
as recognized by -Xs, 81
as type qualifier in parallelized code, 81
as used in parallelized code, 64

__RESTRICT macro, 53
right shift, 353
rounding behavior, 36

S
s implementation of, 315, 336
s new in this release, 25
-S, 237
-s, 102, 237
scanf function, 96
search, source files, See cscope
setlocale(3C), 158, 159

Index

Sun Studio 12: C User's Guide •400

setlocale function, 326
shared libraries, naming, 233
shell prompts, 20-21
short, storage allocation for, 367
signal, 360-362, 362
signal function, 316
signed, 351
signedness of chars, 254
sizeof function, 179
slave thread default setting for STACKSIZE, 64
source files

checking with lint, 89, 118
compatibility of K&, 217
editing

See cscope
locating, 357-358
searching

See cscope
space characters, 362
__sparc, 53, 108
sparc predefined token, 53, 109, 220
__sparcv9, 108
ssbd (C compiler), 31
stabs debugger-data format, 261
stack

memory allocation maximum, 367
setting page size for, 284

STACKSIZE environment variable, 64
standards conformance, 27, 33
stat function, 97
static linking, 221
std level alias disambiguation, 243
stdint.h, macros defined in, 333
storage allocation for types, 367
streams, 362
strerror function, 335
strftime function, 330
strict level alias disambiguation, 243
string literals in text segment, 303
strlcpy function, 96
strong level alias disambiguation, 243
strtod function, 329
strtof function, 329
strtold function, 329

structure
alignment, 355-356
padding, 355-356

__sun, 53, 108
sun predefined token, 53, 109, 220
sun_prefetch.h, 293
SUN_PROFDATA

definition, 55
relating to -xprofile, 295

SUN_PROFDATA_DIR

definition, 55
relating to -xprofile, 295

__SUNPRO_C, 53, 108, 220
SUNPRO_SB_INIT_FILE_NAME environment variable, 55
sunw_mp_register_warn function, 62
SUNW_MP_THR_IDLE environment variable, 55, 63
SUNW_MP_WARN environment variable, 63
__SVR4, 53, 220
symbol declaration specifier, 35
__symbolic, 35
symbolic debugging information, removing, 237
system function, 318, 330

T
tcov, new style with -xprofile, 296
TCOVDIR environment variable, 297
Temporary files, 56
TERM environment variable as used by cscope, 186
text

segment and string literals, 303
stream, 362

__thread, 35
thread local storage of variables, 35
threads, See parallelization
__TIME__, 325, 358
time and date formats, 365
/tmp, 56
TMPDIR environment variable, 56
tokens, 145, 149
tools for programming with C, 31
towctrans function, 336
trigraph sequences, 145
type-based alias-disambiguation, 119, 133

Index

401

types
compatible and composite, 165, 167
const and volatile qualifier, 149, 152
declaration in for loop, 346
declarations and code, 346
incomplete, 163-165, 165
specifier requirement in declaration, 341
storage allocation for, 367

typographic conventions, 19-20
TZ, 364

U
-U, 238
-u, 102
ube (C compiler), 31
ube_ipa (C compiler), 31
uname -r’, 109, 220
uname -s’, 109
__unix, 53, 108, 220
unix predefined token, 53, 109
unsigned, 351
unsigned long long, 39
using assembly in source, 54

V
-V, 102, 238
-v, 102, 238
value

floating point, 353-354
integers, 352-353

varargs(5), 137
variable, thread-local storage specifier, 35
variable declaration specifier, 35
variable length arrays in C99, 344
viable prefix, 289
VIS Software Developers Kit, 312
volatile

compatible declarations with, 166
definition and examples, 151, 152
explanation of keyword and usage, 149

volatile, explanation of keyword and usage, 150

volatile

in C90, 357
VPATH environment variable, 187

W
-W, 102, 239
-w, 240
wait function, 330
wait3 function, 330
waitid function, 330
waitpid function, 330
warning messages, 349
wcsftime function, 330
wcstod function, 329
wcstof function, 329
wcstold function, 329
weak level alias disambiguation, 242
what’, 25
whole-program optimizations, 267
wide character constants, 154
wide characters, 153, 154
wide string literals, 154
write on text stream, 363

X
-X, 240
-x, 105
-Xalias_level, 103
-xalias_level, 241
-xarch, 243
-xautopar, 250
-xbinopt, 251
-xbinopt and, 251
-xbuiltin, 251
-Xc99, 103
-xc99, 252
-XCC, 103
-xCC, 252
-xchar, 254
-xchar_byte_order, 255
-xcheck, 256

Index

Sun Studio 12: C User's Guide •402

-xchip, 256
-xcode, 258
-xcrossfile, 260
-xcsi, 261
-xdebugformat, 261
-xdepend, 261
-xdryrun, 262
-xe, 262
-Xexplicitpar, 104
-xexplicitpar, 262
-xF, 263
-xhelp, 264
-xhwcprof, 265
-xinline, 265
-xipo, 267
-xipo_archive, 269
-xjobs, 270
-Xkeeptmp, 104
-xldscope, 271
-xlibmieee, 272
-xlibmil, 272
-xlibmopt, 272
-xlinkopt, 273
-xloopinfo, 274
-xM, 275
-xM1, 275
-xmaxopt, 276
-xMD, 276
-xmemalign, 277
-xMerge, 276
-xMF, 276
-xMMD, 276
-xmodel, 278
-xnolib, 279
-xnolibmil, 279
-xnolibmopt, 279
-xO, 279
-xopenmp, 282
-xP, 284
-xpagesize, 284
-xpagesize_heap, 285
-xpagesize_stack, 285
-xparallel, 286
-xpch, 287

-xpchstop, 291
-xpentium, 292
-xpg, 292
-xprefetch, 293
-xprefetch_auto_type, 294
-xprefetch_level, 294
-xprofile, 295
-xprofile_ircache, 298
-xprofile_pathmap, 298
-xreduction, 299
-xregs, 299
-xrestrict, 301
-xs, 301
-xsafe, 301
-xsb, 302
-xsbfast, 302
-xsfpconst, 302
-xspace, 303
-xstrconst, 303
-xtarget, 303
-xtemp, 308
-Xtemp, 104
-xthreadvar, 308
-xthreadvar, compiler option, 308
-xtime, 309
-Xtime, 104
-xtransition, 309
-Xtransition, 104
-xtrigraphs, 310
-xunroll, 311
-xustr, 311
-Xustr, 104
-xvector, 312
-xvis, 312
-xvpara, 313

Y
-Y, 313
-y, 105
-YA, 314
-YI, 314
-YP, 314
-YS, 314

Index

403

Z
zero-length file, 363
-Zll, 314

Index

Sun Studio 12: C User's Guide •404

	Sun Studio 12: C User's Guide
	Preface
	Typographic Conventions
	Shell Prompts
	Supported Platforms
	Accessing Sun Studio Documentation
	Documentation in Accessible Formats
	Related Sun Studio Documentation

	Accessing Related Solaris Documentation
	Resources for Developers
	Contacting Sun Technical Support
	Sending Your Comments

	Introduction to the C Compiler
	1.1 New Features and Functionality of the Sun Studio 12 C 5.9 Compiler
	1.1.1 Compiling for 64–Bit Platforms
	1.1.2 Special x86 Notes
	1.1.3 Binary Compatibility Verification

	1.2 Standards Conformance
	1.3 C Readme File
	1.4 Man Pages
	1.5 Organization of the Compiler
	1.6 C-Related Programming Tools

	C-Compiler Information Specific to Sun’s Implementation
	2.1 Constants
	2.1.1 Integral Constants
	2.1.2 Character Constants

	2.2 Linker Scoping Specifiers
	2.3 Thread Local Storage Specifier
	2.4 Floating Point, Nonstandard Mode
	2.5 Labels as Values
	2.6 long long Data Type
	2.6.1 Printing long long Data Types
	2.6.2 Usual Arithmetic Conversions

	2.7 Assertions
	2.8 Pragmas
	2.8.1 align
	2.8.2 c99
	2.8.3 does_not_read_global_data
	2.8.4 does_not_return
	2.8.5 does_not_write_global_data
	2.8.6 error_messages
	2.8.7 fini
	2.8.8 hdrstop
	2.8.9 ident
	2.8.10 init
	2.8.11 inline
	2.8.12 int_to_unsigned
	2.8.13 MP serial_loop
	2.8.14 MP serial_loop_nested
	2.8.15 MP taskloop
	2.8.16 nomemorydepend
	2.8.17 no_side_effect
	2.8.18 opt
	2.8.19 pack
	2.8.20 pipeloop
	2.8.21 rarely_called
	2.8.22 redefine_extname
	2.8.23 returns_new_memory
	2.8.24 unknown_control_flow
	2.8.25 unroll
	2.8.26 warn_missing_parameter_info
	2.8.27 weak

	2.9 Predefined Names
	2.10 The Value of errno
	2.11 _Restrict Keyword
	2.12 _ _asm Keyword
	2.13 Environment Variables
	2.13.1 OMP_DYNAMIC
	2.13.2 OMP_NESTED
	2.13.3 OMP_NUM_THREADS
	2.13.4 OMP_SCHEDULE
	2.13.5 PARALLEL
	2.13.6 SUN_PROFDATA
	2.13.7 SUN_PROFDATA_DIR
	2.13.8 SUNPRO_SB_INIT_FILE_NAME
	2.13.9 SUNW_MP_THR_IDLE
	2.13.10 TMPDIR

	2.14 How to Specify Include Files
	2.14.1 Using the -I- Option to Change the Search Algorithm
	2.14.1.1 Warnings

	Parallelizing Sun C Code
	3.1 Overview
	3.1.1 Example of Use

	3.2 Parallelizing for OpenMP
	3.2.1 Handling OpenMP Runtime Warnings

	3.3 Environment Variables
	3.3.1 PARALLEL
	3.3.1.1 SUNW_MP_THR_IDLE
	SUNW_MP_WARN
	STACKSIZE

	3.3.1.2 Keyword

	3.4 Data Dependence and Interference
	3.4.1 Parallel Execution Model
	3.4.2 Private Scalars and Private Arrays
	3.4.3 Storeback
	3.4.4 Reduction Variables

	3.5 Speedups
	3.5.1 Amdahl’s Law
	3.5.1.1 Overheads
	3.5.1.2 Gustafson’s Law

	3.6 Load Balance and Loop Scheduling
	3.6.1 Static or Chunk Scheduling
	3.6.2 Self Scheduling
	3.6.3 Guided Self Scheduling

	3.7 Loop Transformations
	3.7.1 Loop Distribution
	3.7.2 Loop Fusion
	3.7.3 Loop Interchange

	3.8 Aliasing and Parallelization
	3.8.1 Array and Pointer References
	3.8.2 Restricted Pointers
	3.8.3 Explicit Parallelization and Pragmas
	3.8.3.1 Serial Pragmas
	3.8.3.2 Parallel Pragma
	Nesting of for Loops
	Eligibility for Parallelizing
	Number of Processors
	Classifying Variables
	Default Scoping Rules for private and shared Variables
	private Variables
	shared Variables
	readonly Variables
	storeback Variables
	savelast
	reduction Variables
	Scheduling Control

	lint Source Code Checker
	4.1 Basic and Enhanced lint Modes
	4.2 Using lint
	4.3 The lint Options
	4.3.1 -#
	4.3.2 -###
	4.3.3 -a
	4.3.4 -b
	4.3.5 -C filename
	4.3.6 -c
	4.3.7 -dirout=dir
	4.3.8 -err=warn
	4.3.9 -errchk=l(, l)
	4.3.10 -errfmt=f
	4.3.11 -errhdr=h
	4.3.12 -erroff=tag(, tag)
	4.3.13 -errsecurity=v
	4.3.14 -errtags=a
	4.3.15 -errwarn=t
	4.3.16 -F
	4.3.17 -fd
	4.3.18 -flagsrc=file
	4.3.19 -h
	4.3.20 -Idir
	4.3.21 -k
	4.3.22 -Ldir
	4.3.23 -lx
	4.3.24 -m
	4.3.25 -m32|-m64
	4.3.26 -Ncheck=c
	4.3.27 -Nlevel=n
	4.3.27.1 -Nlevel=1
	4.3.27.2 -Nlevel=2
	4.3.27.3 -Nlevel=3
	4.3.27.4 -Nlevel=4

	4.3.28 -n
	4.3.29 -ox
	4.3.30 -p
	4.3.31 -Rfile
	4.3.32 -s
	4.3.33 -u
	4.3.34 -V
	4.3.35 -v
	4.3.36 -Wfile
	4.3.37 -XCC=a
	4.3.38 -Xalias_level[=l]
	4.3.39 -Xarch=amd64
	4.3.40 -Xarch=v9
	4.3.41 -Xc99[=o]
	4.3.42 -Xexplicitpar=a
	4.3.43 -Xkeeptmp=a
	4.3.44 -Xtemp=dir
	4.3.45 -Xtime=a
	4.3.46 -Xtransition=a
	4.3.47 -Xustr={ascii_utf16_ushort|no}
	4.3.48 -x
	4.3.49 -y

	4.4 lint Messages
	4.4.1 Options to Suppress Messages
	4.4.2 lint Message Formats

	4.5 lint Directives
	4.5.1 Predefined Values
	4.5.2 Directives

	4.6 lint Reference and Examples
	4.6.1 Diagnostics Performed by lint
	4.6.1.1 Consistency Checks
	4.6.1.2 Portability Checks
	4.6.1.3 Questionable Constructs

	4.6.2 lint Libraries
	4.6.3 lint Filters

	Type-Based Alias Analysis
	5.1 Introduction to Type-Based Analysis
	5.2 Using Pragmas for Finer Control
	5.2.1 #pragma alias_level level (list)
	5.2.1.1 #pragma alias (type, type [, type])
	5.2.1.2 #pragma alias (pointer, pointer [, pointer])
	5.2.1.3 #pragma may_point_to (pointer, variable [, variable])
	5.2.1.4 #pragma noalias (type, type [, type])
	5.2.1.5 #pragma noalias (pointer, pointer [, pointer])
	5.2.1.6 #pragma may_not_point_to (pointer, variable [, variable])

	5.3 Checking With lint
	5.3.1 Struct Pointer Cast of Scalar Pointer
	5.3.2 Struct Pointer Cast of Void Pointer
	5.3.3 Cast of Struct Field to Structure Pointer
	5.3.4 Explicit Aliasing Required

	5.4 Examples of Memory Reference Constraints

	Transitioning to ISO C
	6.1 Basic Modes
	6.1.1 -Xc
	6.1.2 -Xa
	6.1.3 -Xt
	6.1.4 -Xs

	6.2 A Mixture of Old- and New-Style Functions
	6.2.1 Writing New Code
	6.2.2 Updating Existing Code
	6.2.3 Mixing Considerations

	6.3 Functions With Varying Arguments
	6.4 Promotions: Unsigned Versus Value Preserving
	6.4.1 Background
	6.4.2 Compilation Behavior
	6.4.3 First Example: The Use of a Cast
	6.4.4 Bit-fields
	6.4.5 Second Example: Same Result
	6.4.6 Integral Constants
	6.4.7 Third Example: Integral Constants

	6.5 Tokenization and Preprocessing
	6.5.1 ISO C Translation Phases
	6.5.2 Old C Translation Phases
	6.5.3 Logical Source Lines
	6.5.4 Macro Replacement
	6.5.5 Using Strings
	6.5.6 Token Pasting

	6.6 const and volatile
	6.6.1 Types, Only for lvalue
	6.6.2 Type Qualifiers in Derived Types
	6.6.3 const Means readonly
	6.6.4 Examples of const Usage
	6.6.5 volatile Means Exact Semantics
	6.6.6 Examples of volatile Usage

	6.7 Multibyte Characters and Wide Characters
	6.7.1 Asian Languages Require Multibyte Characters
	6.7.2 Encoding Variations
	6.7.3 Wide Characters
	6.7.4 Conversion Functions
	6.7.5 C Language Features

	6.8 Standard Headers and Reserved Names
	6.8.1 Standard Headers
	6.8.2 Names Reserved for Implementation Use
	6.8.3 Names Reserved for Expansion
	6.8.4 Names Safe to Use

	6.9 Internationalization
	6.9.1 Locales
	6.9.2 The setlocale() Function
	6.9.3 Changed Functions
	6.9.4 New Functions

	6.10 Grouping and Evaluation in Expressions
	6.10.1 Definitions
	6.10.2 The K&R C Rearrangement License
	6.10.3 The ISO C Rules
	6.10.4 The Parentheses
	6.10.5 The As If Rule

	6.11 Incomplete Types
	6.11.1 Types
	6.11.2 Completing Incomplete Types
	6.11.3 Declarations
	6.11.4 Expressions
	6.11.5 Justification
	6.11.6 Examples

	6.12 Compatible and Composite Types
	6.12.1 Multiple Declarations
	6.12.2 Separate Compilation Compatibility
	6.12.3 Single Compilation Compatibility
	6.12.4 Compatible Pointer Types
	6.12.5 Compatible Array Types
	6.12.6 Compatible Function Types
	6.12.7 Special Cases
	6.12.8 Composite Types

	Converting Applications for a 64-Bit Environment
	7.1 Overview of the Data Model Differences
	7.2 Implementing Single Source Code
	7.2.1 Derived Types
	7.2.1.1 <sys/types.h>
	7.2.1.2 <inttypes.h>
	Fixed-Width Integer Types
	Helpful Types Such as unintptr_t
	Constant Macros
	Limits
	Format String Macros

	7.2.2 Tools
	7.2.2.1 lint

	7.3 Converting to the LP64 Data Type Model
	7.3.1 Integer and Pointer Size Change
	7.3.2 Integer and Long Size Change
	7.3.3 Sign Extension
	7.3.4 Pointer Arithmetic Instead of Integers
	7.3.5 Structures
	7.3.6 Unions
	7.3.7 Type Constants
	7.3.8 Beware of Implicit Declarations
	7.3.9 sizeof() Is an Unsigned long
	7.3.10 Use Casts to Show Your Intentions
	7.3.11 Check Format String Conversion Operation

	7.4 Other Considerations
	7.4.1 Derived Types That Have Grown in Size
	7.4.2 Check for Side Effects of Changes
	7.4.3 Check Whether Literal Uses of long Still Make Sense
	7.4.4 Use #ifdef for Explicit 32-bit Versus 64-bit Prototypes
	7.4.5 Calling Convention Changes
	7.4.6 Algorithm Changes

	7.5 Checklist for Getting Started

	cscope: Interactively Examining a C Program
	8.1 The cscope Process
	8.2 Basic Use
	8.2.1 Step 1: Set Up the Environment
	8.2.2 Step 2: Invoke the cscope Program
	8.2.3 Step 3: Locate the Code
	8.2.4 Step 4: Edit the Code
	8.2.5 Command-Line Options
	8.2.6 View Paths
	8.2.7 cscope and Editor Call Stacks
	8.2.8 Examples
	8.2.8.1 Changing a Constant to a Preprocessor Symbol
	8.2.8.2 Adding an Argument to a Function
	8.2.8.3 Changing the Value of a Variable

	8.2.9 Command-Line Syntax for Editors

	8.3 Unknown Terminal Type Error

	Compiler Options Grouped by Functionality
	A.1 Options Summarized by Function
	A.1.1 Optimization and Performance Options
	A.1.2 Compile-Time and Link-Time Options
	A.1.3 Data-Alignment Options
	A.1.4 Numerics and Floating Point Options
	A.1.5 Parallelization Options
	A.1.6 Source-Code Options
	A.1.7 Compiled-Code Options
	A.1.8 Compilation-Mode Options
	A.1.9 Diagnostic Options
	A.1.10 Debugging Options
	A.1.11 Linking and Libraries Options
	A.1.12 Target-Platform Options
	A.1.13 x86-Specific Options
	A.1.14 Licensing Options
	A.1.15 Obsolete Options

	C Compiler Options Reference
	B.1 Option Syntax
	B.2 The cc Options
	B.2.1 -#
	B.2.2 -###
	B.2.3 -Aname[(tokens)]
	B.2.4 -B[static|dynamic]
	B.2.5 -C
	B.2.6 -c
	B.2.7 -Dname[(arg[,arg])][=expansion]
	B.2.8 -d[y|n]
	B.2.9 -dalign
	B.2.10 -E
	B.2.11 -errfmt[=[no%]error]
	B.2.12 -erroff[=t]
	B.2.13 -errshort[=i]
	B.2.14 -errtags[=a]
	B.2.15 -errwarn[=t]
	B.2.16 -fast
	B.2.17 -fd
	B.2.18 -features=[[no%]extinl|%none]
	B.2.19 -flags
	B.2.20 -flteval[={any|2}]
	B.2.21 -fma[={none|fused}]
	B.2.22 -fnonstd
	B.2.23 -fns[={no|yes}]
	B.2.24 -fprecision=p
	B.2.25 -fround=r
	B.2.26 -fsimple[=n]
	B.2.27 -fsingle
	B.2.28 -fstore
	B.2.29 -ftrap=t[,t...]
	B.2.30 -G
	B.2.31 -g
	B.2.32 -H
	B.2.33 -h name
	B.2.34 -I[-|dir]
	B.2.35 -i
	B.2.36 -KPIC
	B.2.37 -Kpic
	B.2.38 -keeptmp
	B.2.39 -Ldir
	B.2.40 -lname
	B.2.41 -m32|-m64
	B.2.42 -mc
	B.2.43 -misalign
	B.2.44 -misalign2
	B.2.45 -mr[,string]
	B.2.46 -mt
	B.2.47 -native
	B.2.48 -nofstore
	B.2.49 -O
	B.2.50 -o filename
	B.2.51 -P
	B.2.52 -p
	B.2.53 -Q[y|n]
	B.2.54 -qp
	B.2.55 -Rdir[:dir]
	B.2.56 -S
	B.2.57 -s
	B.2.58 -Uname
	B.2.59 -V
	B.2.60 -v
	B.2.61 -Wc,arg
	B.2.62 -w
	B.2.63 -X[c|a|t|s]
	B.2.64 -x386
	B.2.65 -x486
	B.2.66 -xa
	B.2.67 -xalias_level[=l]
	B.2.68 -xarch=isa
	B.2.68.1 -xarch Flags for SPARC
	B.2.68.2 -xarch Flags for x86
	Special x86 Notes
	Binary Compatibility Verification

	B.2.68.3 The SPARC Default
	B.2.68.4 The x86 Default

	B.2.69 -xautopar
	B.2.70 -xbinopt={prepare|off}
	B.2.71 -xbuiltin[=(%all|%none)]
	B.2.72 -xCC
	B.2.73 -xc99[=o]
	B.2.74 -xcache[=c]
	B.2.75 –xcg[89|92]
	B.2.76 -xchar[=o]
	B.2.77 -xchar_byte_order[=o]
	B.2.78 -xcheck[=o]
	B.2.79 -xchip[=c]
	B.2.80 -xcode[=v]
	B.2.81 -xcrossfile[=n]
	B.2.82 -xcsi
	B.2.83 -xdebugformat=[stabs|dwarf]
	B.2.84 -xdepend=[yes|no]
	B.2.85 -xdryrun
	B.2.86 -xe
	B.2.87 -xexplicitpar
	B.2.88 -xF[=v[,v...]]
	B.2.88.1 Values

	B.2.89 -xhelp=f
	B.2.90 -xhwcprof
	B.2.91 -xinline=list
	B.2.92 -xinstrument=[no%]datarace
	B.2.93 -xipo[=a]
	B.2.93.1 Examples
	B.2.93.2 When Not To Use -xipo=2 Interprocedural Analysis

	B.2.94 -xipo_archive=[a]
	B.2.95 -xjobs=n
	B.2.96 -xldscope={v}
	B.2.97 -xlibmieee
	B.2.98 -xlibmil
	B.2.99 -xlibmopt
	B.2.100 -xlic_lib=sunperf
	B.2.101 -xlicinfo
	B.2.102 -xlinkopt[=level]
	B.2.103 -xloopinfo
	B.2.104 -xM
	B.2.105 -xM1
	B.2.106 -xMD
	B.2.107 -xMF filename
	B.2.108 -xMMD
	B.2.109 -xMerge
	B.2.110 -xmaxopt[=v]
	B.2.111 -xmemalign=ab
	B.2.112 -xmodel=[a]
	B.2.113 -xnolib
	B.2.114 -xnolibmil
	B.2.115 -xnolibmopt
	B.2.116 -xnorunpath
	B.2.117 -xO[1|2|3|4|5]
	B.2.117.1 Explanation of SPARC Optimizations
	B.2.117.2 Explanation of x86 Optimizations

	B.2.118 -xopenmp[=i]
	B.2.119 -xP
	B.2.120 -xpagesize=n
	B.2.121 -xpagesize_heap=n
	B.2.122 -xpagesize_stack=n
	B.2.123 -xparallel
	B.2.124 -xpch=v
	B.2.124.1 Creating a Precompiled-Header File Automatically
	B.2.124.2 Creating a Precompiled-Header File Manually
	B.2.124.3 How the Compiler Handles an Existing Precompiled-Header File
	B.2.124.4 Directing the Compiler to Use a Specific Precompiled-Header File
	B.2.124.5 The Viable Prefix
	B.2.124.6 Screening a Header File for Problems
	B.2.124.7 The Precompiled-Header File Cache
	B.2.124.8 Warnings
	B.2.124.9 Precompiled-Header File Dependencies and make Files

	B.2.125 -xpchstop=[file|<include>]
	B.2.126 -xpentium
	B.2.127 -xpg
	B.2.128 -xprefetch[=val[,val]]
	B.2.128.1 Prefetch Latency Ratio

	B.2.129 -xprefetch_auto_type=a
	B.2.130 -xprefetch_level=l
	B.2.131 -xprofile=p
	B.2.132 -xprofile_ircache[=path]
	B.2.133 -xprofile_pathmap
	B.2.134 -xreduction
	B.2.135 -xregs=r[,r]
	B.2.136 -xrestrict[=f]
	B.2.137 -xs
	B.2.138 -xsafe=mem
	B.2.139 -xsb
	B.2.140 -xsbfast
	B.2.141 -xsfpconst
	B.2.142 -xspace
	B.2.143 -xstrconst
	B.2.144 -xtarget=t
	B.2.144.1 -xtarget Values on SPARC Platforms
	B.2.144.2 -xtarget Values on x86 Platforms

	B.2.145 -xtemp=dir
	B.2.146 -xthreadvar[=o]
	B.2.147 -xtime
	B.2.148 -xtransition
	B.2.149 -xtrigraphs
	B.2.150 -xunroll=n
	B.2.151 -xustr={ascii_utf16_ushort|no}
	B.2.152 -xvector[=a]
	B.2.153 -xvis
	B.2.154 -xvpara
	B.2.155 -Yc, dir
	B.2.156 -YA, dir
	B.2.157 -YI, dir
	B.2.158 -YP, dir
	B.2.159 -YS, dir
	B.2.160 -Zll

	B.3 Options Passed to the Linker

	Implementation-Defined ISO/IEC C99 Behavior
	C.1 Implementation-defined Behavior (J.3)
	C.1.1 Translation (J.3.1)
	C.1.2 Environment (J.3.2)
	C.1.3 Identifiers (J.3.3)
	C.1.4 Characters (J.3.4)
	C.1.5 Integers (J.3.5)
	C.1.6 Floating point (J.3.6)
	C.1.7 Arrays and Pointers (J.3.7)
	C.1.8 Hints (J.3.8)
	C.1.9 Structures, Unions, Enumerations, and Bit-fields (J.3.9)
	C.1.10 Qualifiers (J.3.10)
	C.1.11 Preprocessing Directives (J.3.11)
	C.1.12 Library Functions (J.3.12)
	C.1.13 Architecture (J.3.13)
	C.1.14 Locale-specific Behavior (J.4)

	Supported Features of C99
	D.1 Discussion and Examples
	D.1.1 Precision of Floating Point Evaluators
	D.1.2 C99 Keywords
	D.1.2.1 Using the restrict Keyword

	D.1.3 __func__ Support
	D.1.4 Universal Character Names (UCN)
	D.1.5 Commenting Code With //
	D.1.6 Disallowed Implicit int and Implicit Function Declarations
	D.1.7 Declarations Using Implicit int
	D.1.8 Flexible Array Members
	D.1.9 Idempotent Qualifiers
	D.1.10 inline Functions
	D.1.11 Static and Other Type Qualifiers Allowed in Array Declarators
	D.1.12 Variable Length Arrays (VLA):
	D.1.13 Designated Initializers
	D.1.14 Mixed Declarations and Code
	D.1.15 Declaration in for-Loop Statement
	D.1.16 Macros With a Variable Number of Arguments
	D.1.17 _Pragma

	Implementation-Defined ISO/IEC C90 Behavior
	E.1 Implementation Compared to the ISO Standard
	E.1.1 Translation (G.3.1)
	E.1.1.1 (5.1.1.3) Identification of diagnostics:

	E.1.2 Environment (G.3.2)
	E.1.2.1 (5.1.2.2.1) Semantics of arguments to main:
	(5.1.2.3) What constitutes an interactive device:

	E.1.3 Identifiers (G.3.3)
	E.1.3.1 (6.1.2) The number of significant initial characters (beyond 31) in an identifier without external linkage:
	(6.1.2) The number of significant initial characters (beyond 6) in an identifier with external linkage:

	E.1.4 Characters (G.3.4)
	E.1.4.1 (5.2.1) The members of the source and execution character sets, except as explicitly specified in the Standard:
	(5.2.1.2) The shift states used for the encoding of multibyte characters:
	(5.2.4.2.1) The number of bits in a character in the execution character set:
	(6.1.3.4) The mapping of members of the source character set (in character and string literals) to members of the execution character set:
	(6.1.3.4) The value of an integer character constant that contains a character or escape sequence not represented in the basic execution character set or the extended character set for a wide character constant:
	(3.1.3.4) The value of an integer character constant that contains more than one character or a wide character constant that contains more than one multibyte character:
	(6.1.3.4) The current locale used to convert multibyte characters into corresponding wide characters (codes) for a wide character constant:
	(6.2.1.1) Whether a plain char has the same range of values as signed char or unsigned char:

	E.1.5 Integers (G.3.5)
	E.1.5.1 (6.1.2.5) The representations and sets of values of the various types of integers:
	(6.2.1.2) The result of converting an integer to a shorter signed integer, or the result of converting an unsigned integer to a signed integer of equal length, if the value cannot be represented:
	(6.3) The results of bitwise operations on signed integers:
	(6.3.5) The sign of the remainder on integer division:
	(6.3.7) The result of a right shift of a negative-valued signed integral type:

	E.1.6 Floating-Point (G.3.6)
	E.1.6.1 (6.1.2.5) The representations and sets of values of the various types of floating-point numbers:
	(6.2.1.3) The direction of truncation when an integral number is converted to a floating-point number that cannot exactly represent the original value:
	(6.2.1.4) The direction of truncation or rounding when a floating- point number is converted to a narrower floating-point number:

	E.1.7 Arrays and Pointers (G.3.7)
	E.1.7.1 (6.3.3.4, 7.1.1) The type of integer required to hold the maximum size of an array; that is, the type of the sizeof operator, size_t:
	(6.3.4) The result of casting a pointer to an integer, or vice versa:
	(6.3.6, 7.1.1) The type of integer required to hold the difference between two pointers to members of the same array, ptrdiff_t:

	E.1.8 Registers (G.3.8)
	E.1.8.1 (6.5.1) The extent to which objects can actually be placed in registers by use of the register storage-class specifier:

	E.1.9 Structures, Unions, Enumerations, and Bit-Fields (G.3.9)
	E.1.9.1 (6.3.2.3) A member of a union object is accessed using a member of a different type:
	(6.5.2.1) The padding and alignment of members of structures.
	(6.5.2.1) Whether a plain int bit-field is treated as a signed int bit-field or as an unsigned int bit-field:
	(6.5.2.1) The order of allocation of bit-fields within an int:
	(6.5.2.1) Whether a bit-field can straddle a storage-unit boundary:
	(6.5.2.2) The integer type chosen to represent the values of an enumeration type:

	E.1.10 Qualifiers (G.3.10)
	E.1.10.1 (6.5.5.3) What constitutes an access to an object that has volatile-qualified type:

	E.1.11 Declarators (G.3.11)
	E.1.11.1 (6.5.4) The maximum number of declarators that may modify an arithmetic, structure, or union type:

	E.1.12 Statements (G.3.12)
	E.1.12.1 (6.6.4.2) The maximum number of case values in a switch statement:

	E.1.13 Preprocessing Directives (G.3.13)
	E.1.13.1 (6.8.1) Whether the value of a single-character character constant in a constant expression that controls conditional inclusion matches the value of the same character constant in the execution character set:
	(6.8.1) Whether such a character constant may have a negative value:
	(6.8.2) The method for locating includable source files:
	(6.8.2) The support of quoted names for includable source files:
	(6.8.2) The mapping of source file character sequences:
	(6.8.6) The behavior on each recognized #pragma directive:
	(6.8.8) The definitions for __DATE__ and __TIME__ when, respectively, the date and time of translation are not available:

	E.1.14 Library Functions (G.3.14)
	E.1.14.1 (7.1.6) The null pointer constant to which the macro NULL expands:
	(7.2) The diagnostic printed by and the termination behavior of the assert function:
	(7.3.1) The sets of characters tested for by the isalnum, isalpha, iscntrl, islower, isprint, and isupper functions:
	(7.5.1) The values returned by the mathematics functions on domain errors:
	(7.5.1) Whether the mathematics functions set the integer expression errno to the value of the macro ERANGE on underflow range errors:
	(7.5.6.4) Whether a domain error occurs or zero is returned when the fmod function has a second argument of zero:
	(7.7.1.1) The set of signals for the signal function:
	(7.7.1.1) The default handling and the handling at program startup for each signal recognized by the signal function:
	(7.7.1.1) If the equivalent of signal(sig, SIG_DFL); is not executed prior to the call of a signal handler, the blocking of the signal that is performed:
	(7.7.1.1) Whether the default handling is reset if the SIGILL signal is received by a handler specified to the signal function:
	(7.9.2) Whether the last line of a text stream requires a terminating new-line character:
	(7.9.2) Whether space characters that are written out to a text stream immediately before a new-line character appear when read in:
	(7.9.2) The number of null characters that may be appended to data written to a binary stream:
	(7.9.3) Whether the file position indicator of an append mode stream is initially positioned at the beginning or end of the file:
	(7.9.3) Whether a write on a text stream causes the associated file to be truncated beyond that point:
	(7.9.3) The characteristics of file buffering:
	(7.9.3) Whether a zero-length file actually exists:
	(7.9.3) The rules for composing valid file names:
	(7.9.3) Whether the same file can be open multiple times:
	(7.9.4.1) The effect of the remove function on an open file:
	(7.9.4.2) The effect if a file with the new name exists prior to a call to the rename function:
	(7.9.6.1) The output for %p conversion in the fprintf function:
	(7.9.6.2) The input for %p conversion in the fscanf function:
	(7.9.6.2) The interpretation of a- character that is neither the first nor the last character in the scan list for %[conversion in the fscanf function:

	E.1.15 Locale-Specific Behavior (G.4)
	E.1.15.1 (7.12.1) The local time zone and Daylight Savings Time:
	(7.12.2.1) The era for the clock function
	(5.2.1) The content of the execution character set, in addition to the required members:
	(5.2.2) The direction of printing:
	(7.1.1) The decimal-point character:
	(7.3) The implementation-defined aspects of character testing and case mapping functions:
	(7.11.4.4) The collation sequence of the execution character set:
	(7.12.3.5) The formats for time and date:

	ISO C Data Representations
	F.1 Storage Allocation
	F.2 Data Representations
	F.2.1 Integer Representations
	F.2.2 Floating-Point Representations
	F.2.3 Exceptional Values
	F.2.4 Hexadecimal Representation of Selected Numbers
	F.2.5 Pointer Representation
	F.2.6 Array Storage
	F.2.7 Arithmetic Operations on Exceptional Values

	F.3 Argument-Passing Mechanism
	F.3.1 32-Bit SPARC
	F.3.1.1 64-Bit SPARC
	(x86)

	Performance Tuning (SPARC)
	G.1 Limits
	G.2 libfast.a Library

	The Differences Between K&R Sun C and Sun ISO C
	H.1 K&R Sun C Incompatibilities With Sun ISO C
	H.2 Keywords

	Index

